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Abstract 

In Joint Concept: Human Aspects of Military Operations (JC-HAMO), the need for 

identifying critical actors within a target network is clearly identified as a precursor to 

successfully influencing decision making and operational outcomes.  JC-HAMO seeks 

methods to identify critical actors within the context of multiple types of networks and over 

a period of time. This problem can be approached structurally using a time-stamped 

multilayer network. One method of identifying critical actors in a single layer—fully-

aggregated—network involves ranking actors in order of importance by some set of 

network measures. This thesis explores a method for extending such a ranking of critical 

actors into a multilayer network context. Specifically, it borrows and applies a 

methodology from the field of electoral systems to the problem of ranking actors based on 

a set of rankings for each layer.  

The Schulze method—a deterministic voting methodology based on a modified 

shortest path algorithm—is examined and its performance is assessed through statistical 

comparison with identified alternative approaches and baseline rankings. Potential 

advantages and limitations are identified as well as a method for increasing its robustness 

when the networks of interest contain many isolated components. This is done by adopting 

a secondary weighting scheme. As a corollary study, an information-theoretic multilayer 

network layer-reduction heuristic is explored and the resulting rankings on the reduced 

multilayer network are compared with those of the full multilayer network and those of the 

corresponding fully-aggregated single layer network. A tertiary effort compares two 
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distinct multilayer network weighting schemes. Results are based on the study of an open 

sourced multilayer time-stamped terrorist network.  
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ANALYSIS OF A VOTING METHOD FOR RANKING NETWORK 

CENTRALITY MEASURES ON A NODE-ALIGNED MULTIPLEX NETWORK 

 

I. Introduction 

 

1.1   Chapter Overview 

This chapter serves as an introduction to the work presented in this thesis. The 

general topic is discussed along with the underlying motivation for pursuing this research. 

The specific problems are identified and a brief introduction is given to what will be 

presented later in the document. This includes the literature review, the methodology of 

analysis, the analysis of the results, and a conclusion of the research. 

1.2   Overview of Thesis Objectives 

This thesis is multifaceted. The primary objective is to demonstrate the utility of a 

social choice theory methodology for ranking network measures on a multilayer network. 

The secondary objective is to investigate the effects on such rankings of the prior reduction 

(partial aggregation of the layers) of the same multilayer network which is reduced using 

an information theoretic distance measure and clustering algorithm. The tertiary objective 

is to investigate the effects of weighting the data within the methodology. 

A cross-disciplinary literature review was conducted which successfully bridged 

distinct domains of study in a novel way to produce a new methodology. This methodology 

helps to address a fundamental operational problem: finding the most important targets in 
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a multilayer network. Initial results are promising and suggest ample room for future 

research.  

Each objective was met using a mixed approach of statistical and qualitative 

analyses. Analyses and conclusions were based upon the study of a single multilayer 

network dataset, the Noordin Top terrorist network. This dataset is described in detail in 

Chapter III. 

1.3   General Issue 

In Joint Concept for Human Aspects of Military Operations (JC-HAMO), (a 

publication of future concepts of operations published by the Office of the Joint Chiefs of 

Staff), it is rightly recognized “that war is fundamentally and primarily a human endeavor” 

and that “the need to understand relevant actors’ motivations and the underpinnings of their 

will” continues to be a key challenge within military operations (Office of the Joint Chiefs 

of Staff, 2016). To this end, it lists as its central idea four action items for the Joint Force 

as shown in Figure 1. 
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Figure 1: JC-HAMO Central Idea and Four Actions  

(Office of the Joint Chiefs of Staff, 2016) 

In order to accomplish all four action items, relevant actors must be identified by 

considering networks similar to those listed in Figure 1, bullet 1 (Office of the Joint Chiefs 

of Staff, 2016). A relevant actor is defined as “individuals, groups, and populations whose 

behavior has the potential to substantially help or hinder the success of a particular 

campaign, operation, or tactical action” (Office of the Joint Chiefs of Staff, 2016).  

Additionally, a relevant actor’s “religion, ethnicity, gender, language, tribe, social 

class, caste, occupation, or geographic area of birth” will contribute to his or her 

perceptions of interest (Office of the Joint Chiefs of Staff, 2016, p. 18). These aspects can 

be modeled as network layers. These network layers may be related; some of the layers 

may be more or less important than others in determining an actor’s perceptions and 

behaviors (Office of the Joint Chiefs of Staff, 2016).  
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In addition to emphasizing the importance of relevant actor identification, JC-

HAMO goes on to identify several required capabilities for the Joint Force. Key among 

these in the context of this research is section 7.1, Required Capabilities to Identify the 

Range of Relevant Actors and Their Associated Networks. This is mission-specific and can 

include identification of individuals and any appropriate groupings thereof. The mission-

specificity requirement drives the need for continual re-evaluation of key actors based on 

changing mission objectives (Office of the Joint Chiefs of Staff, 2016, p. 26). This re-

evaluation will ideally identify “constraints and enablers of behavior” from the past, in the 

present, and for the future (Office of the Joint Chiefs of Staff, 2016, p. 19).  

JC-HAMO Section 7.1.1, the ability to understand the evolving operational 

environment through the human aspects lens lists several additional networks of interest, 

including political, religious, and community affiliations, patronage, financial, commercial 

and logistic relationships, education and social status, informational, and psychological 

considerations (Office of the Joint Chiefs of Staff, 2016, pp. 26-27). An ensemble of such 

networks can be modeled using a multilayer network formulation (Kivela, Arenas, 

Barthelemy, Gleeson, Moreno, and Porter, 2014).  

These identified capability needs for the Joint Force align well with the objectives 

of this research. Identify the Range of Relevant Actors and their Associated Networks is 

directly related to the problem of identifying critical nodes, but with an extension into a 

multilayer context; the primary objective of this research is to offer a method for 

identifying relevant actors in terms of some ranking of nodal network measures—measures 

under which each node is given its own value—on a multilayer network.  
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Once a measure or set of measures is identified to appropriately measure relevance, 

such measures may be incorporated into this methodology. The methodology gives rise to 

a list of relevant actors under the chosen measure(s).  

Additionally, the temporal perspective is addressed when data includes timestamps, 

leading to potential identification of key events’ impacts on the actors’ relevance over time. 

This allows one to meet the goal of gaining “an appreciation of how behavior evolves over 

time as a result of various stimuli, including friendly force operations and activities in the 

environment” (Office of the Joint Chiefs of Staff, 2016, p. 28).  

The primary benefit of a multilayer representation is clear: additional information 

can be recorded to yield new and unique insights not visible when viewing the problem 

through the lens of a single network, or at a single time (Brummitt, Lee, & Goh, 2012; 

Kivela, et al., 2014). The cost is, of course, an increased need for data to create the 

multilayer network in the first place. This is compounded when considering the need to 

collect data at repeated time intervals to build a temporal lens, a desired framework given 

in JC-HAMO (Office of the Joint Chiefs of Staff, 2016). Such additional need for 

information can be met in the form of intelligence products. This aligns well with the 

identified intelligence requirement defined in JC-HAMO and is integral with any potential 

solution (Office of the Joint Chiefs of Staff, 2016, pp. 27-29).   

In fact, as with any analysis, the outcome is largely dependent on the quality of data 

evaluated. Understanding relevant actors, their changes over time, and their relative 

importance within various network aspects will depend on reliable information. Thus it is 

crucial to gain appropriate intelligence to feed any model (Office of the Joint Chiefs of 
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Staff, 2016, p. 43). Nevertheless, with good information, a multilayer network model can 

be useful in identifying relevant actors.  The methodology proposed in this thesis can be 

applied to address the problem of identifying relevant actors.  

1.2.2  Research Overview.  

In this research, a time-stamped terrorist network dataset is analyzed. This dataset 

is the Noordin Top network consisting of 139 network actors, 12 relationships, and 120 

monthly timestamped data frames (Cunningham, Everton, & Murphy, 2016; Everton, 

2013). The timestamps represent whether or not a network member was present in the 

network during a given month in the 120 month period (Everton, 2013). 

The data are recorded as square adjacency matrices each having 139 rows and 

columns corresponding to the 139 actors. These each carry a timestamp value (numbered 

1 to 120) and a relationship—or aspect—type (numbered 1 to 12). The matrices are aligned 

to form a two-dimensional 1440 matrix array with each entry representing a network layer 

within the multilayer networks. This time-stamped data is investigated for trends in 

stability of rankings.  

The network is also analyzed in its non-time-stamped state. This is a network which 

consists of 12 layers which represent the aggregation of the time data for each layer. 

Rankings are computed on this single multiplex using a weight-modified Schulze voting 

method (Schulze, 2011). The multiplex is next subjected to a Jensen-Shannon distance 

layer-reduction algorithm (De Domenico, Nicosia, Arenas, & Latora, 2015) and rankings 

are computed on the reduced network. These rankings are compared to the rankings for the 

full multiplex network and against the fully-aggregated network. Statistical conclusions are 
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drawn as are qualitative conclusions based on the identities of the nodes ranked in the top 

20 positions under each set of conditions. 

1.4   Problem Statements 

1. Can a select voting method be adopted and demonstrated to effectively produce 

rankings of nodes for a multilayer network under select network measures? 

2. How are such rankings affected by reduction in the number of layers within the 

multilayer network using a select layer reduction algorithm? 

3. How do changes in weight distributions alter ranking outcomes? 

1.5   Approach 

A method for identifying critical nodes in a multilayer network context is needed.  

Borgatti (2006) defined the key player problem as being of two types, positive and negative 

(Borgatti, 2006). He noted that it is an old problem and had been originally approached by 

identifying critical nodes using network centrality measures, but that this approach suffered 

from two problems: the goal problem and the ensemble problem. The goal problem states 

that the solution should reflect more than just finding an optimal cut set, but rather should 

consider the quality of the resulting cut (Borgatti, 2006). The ensemble problem states that 

the optimal solution for a set of nodes is not necessarily the same as the set of optimal 

solutions for single nodes (Borgatti, 2006). 

This thesis does not attempt to fully formulate Borgatti’s (2006) definitions of the 

key player problem, positive or negative, within a multilayer network context; rather it 

seeks to extend the original problem of identifying critical nodes within a network through 
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ranking measures of centrality. Therefore, a method is explored for ranking such measures 

to determine critical nodes within a multilayer network context.  

Traditionally, the first step to computing centrality rankings on a multilayer 

network is to aggregate the network’s layers into one single layer network and then 

compute the measure and its ranking. This aggregation can cause information loss, partially 

obviating the benefit of conducting critical node identification on a multilayer data set.  

One approach considered in the literature is to reformulate existing single layer 

network measures of interest to apply within a multilayer network. Some such attempts are 

reviewed, and it is noted that such an approach is both non-trivial, and requires a separate 

effort for each measure desired.   

In contrast, the proposed approach solves the ranking problem on each layer 

individually and combines the several rankings to form one composite ranking, which is 

representative of the multilayer structure. The challenge lies in how to make a meaningful 

aggregation of rankings which might account for the information contained in the 

multilayer structure.  

Potential approaches to rank aggregation include employing a numerical average, 

convex combination, linear combination, or some other summative procedure to arrive at 

a composite ranking given several unique rankings associated with each layer of a 

multilayer network. Some such approaches are discussed in the literature review.  

This thesis instead borrows from the field of social choice theory to propose the use 

of a deterministic combination method based on a widest path algorithm in a novel way 
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(Schulze, 2011). Social choice theory methods have previously been applied to other 

disciplines; in the case of social network analysis, this has been only in the context of single 

layer networks. Social choice theory’s application to multilayer social networks is 

seemingly a new contribution by this research. 

A challenge arises when working with multilayer networks: the computational 

complexity of network analysis scales with the number of layers being analyzed. For large 

datasets with a large number of layers, this can pose substantial computational challenges. 

This motivates the desire for applying layer reduction—selective aggregation—

mechanisms, but their effects on network measures need to be better understood (De 

Domenico, et al., 2015). Thus, a corollary problem in this thesis is the investigation of a 

layer reduction technique and its effects on resulting network centrality rankings.  

Optimal reduction of layers is a combinatorically difficult problem. To ensure an 

optimal solution, each potential way of partitioning network layers may be considered. 

Different combinations might result in different overlap of information contained within 

the aggregated layers, which might then yield different measurement values. The problem 

can be reduced to the general set partitioning problem and the set of possible partitions 

scales as the 𝑀𝑀𝑡𝑡ℎ Bell number for 𝑀𝑀 layers. Given this, a heuristic is needed for choosing 

which layers to aggregate and which to maintain as a separate layer within the reduced 

multilayer network. A prominent heuristic is chosen from the literature and investigated 

for its effects on rankings. 

This work also seeks to make statistical assessments on the resulting measurement 

rankings and as such, poses a series of specific statistical research questions to be 
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addressed. The rankings are directly compared using the Friedman’s test. In this way, the 

statistical (dis)similarity of ranking outcomes under different subsets of the full multilayer 

network’s information content can be determined. The Spearman’s correlation coefficient 

is used to identify correlations between rankings. Correlation values are observed over time 

to identify blocks of time where the rankings remain well-correlated, implying stability.  

Additional qualitative questions are investigated to establish the utility or benefit 

of the proposed methodology. The approaches taken to answer the full set of research 

questions are described in Chapter III.  

1.6   Assumptions 

 Several assumptions were made in the course of this research. A notable assumption 

is that built-in implementations of algorithms within MATLAB are accurate and precise. 

It was also generally assumed that claims in peer-reviewed research are accurate excepting 

minor editing errors. If findings were presented in a paper, those findings were accepted 

unless testing was specifically conducted during this research which demonstrated 

otherwise. 

 The data used are assumed to be accurate; analysis is predicated on the data serving 

as a ground truth reference. Data of the sort is often collected in a snowballing manner in 

which a target of interest (or one on whom it is easiest to find information) is observed or 

investigated further. This creates a snowball effect around the target, so that most data will, 

by definition, relate to the original target. Snowballing can introduce some bias and thus 

does limit the final conclusions that can be drawn in general. These conclusions must 

instead be interpreted under this caveat.   
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1.7   Implications 

 The proposed methodology demonstrates use of a new tool for identification of 

critical nodes in a multilayer network. Critical can be defined in many ways; the 

methodology discussed is not dependent on any particular definition. This is true so long 

as the measure of criticality can be computed for each node. It also requires that a numeric 

ranking of the measure imply an ordinal valuation of the nodes. 

 If it can be shown that the proposed method is applicable, even with limitations, to 

the identification of critical nodes on a multilayer network, then a new aperture will be 

opened between two research domains: the literature of ranking nodes on multilayer 

networks and the literature of social choice theory and the various voting methods therein. 

1.8   Preview 

Chapter I described the desire to balance computation costs with information 

derived from additional layers within a network. It described a need for additional research 

into identifying critical nodes in a multilayer context. Chapter II will present a review of 

the relevant literature focusing on social network analysis, multilayer networks, multilayer 

network reduction methods, multilayer network centrality measures, and social choice 

theory. 

Chapter 3 will list the methodology in detail to include a description of the data and 

their processing, layer reduction, centrality rankings, statistical comparisons, and 

qualitative analysis processes used. Chapter IV lists the results and their analysis. Chapter 
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V presents a final summary of the work along with directions for future research and 

recommendations for action. 
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II. Literature Review 

 

2.1   Chapter Overview 

This chapter describes the relevant literature reviewed in the course of conducting 

the studies in this thesis. In this literature review, a very brief review of social network 

analysis literature is conducted. Next it discusses multilayer social networks and their 

measurement. A short review of multilayer network reduction techniques that allow for 

adequate rank comparisons is then produced. Finally, the field of social choice theory and 

voting theory is explored.  

2.2   Description 

Judicious application of resources toward operational ends involves identifying 

targets of highest impact by whatever measures are deemed important. It is natural to first 

measure a set of possible targets to give each target a values. The possible targets can then 

be ranked based on their relative values. These rankings then correspond to a list of targets, 

which are prioritized by the chosen measure. Incorporating multiple network layers and 

multiple measures of value produces multiple rankings. Aggregation of rankings to 

produce a final, composited ranking is of interest.   

Information gathering and targeting practices involve the judicious use of limited 

resources. Any ability to gain additional benefits from equivalent resources or identical 

benefits from fewer resources is of interest to the Department of Defense. For a social 

network, additional data in the form of a new set of relational ties can be represented as 

distinct network layers within the multilayer network. Each new layer can contribute 



27 
 

different information to the analysis of a social network. However, gathering the 

information needed to build these layers can be expensive in terms of resource allocation. 

Any ability to reduce the required number of layers—and thus amount of data—while 

maintaining statistically equivalent analytic conclusions is of great interest. 

2.3   Relevant Research 

2.3.1  Overview. 

This literature review begins by focusing on basic concepts in social network 

analysis (SNA). This review then examines extensions of social networks and SNA into 

multilayer network formulations. Multilayer networks are networks with more than one 

layer where each layer represents a distinct relationship between nodes (Kivela, et al., 

2014). Multilayer networks may be able to represent real world systems with greater 

fidelity since real-world social networks are seldom well-described by a single relation 

(Boccaletti, et al., 2014). The potential benefits of these multilayer formulations are 

explored through a brief exposition of information theoretic applications and findings. 

Some attempts at developing multilayer centrality measures are then explored. Finally, a 

brief review of the field of social choice theory with a focus on voting theory is conducted. 

2.3.2  Social Networks. 

SNA is the analysis of networks of social relationships between individuals or 

groups (Wasserman & Faust, 1994) through the use of network and graph theories (Otte & 

Rousseau, 2002). It involves theoretical concepts, methods and techniques to identify 
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social relations, their structure, and their influence on behavior, attitudes, beliefs, and 

knowledge (Prell, 2012).  

SNA is based in part on an assumption of the importance of relationships among 

interacting individuals. The unit of analysis is not the individual itself, but rather a system 

consisting of both a collection of individuals and of the links among them (Wasserman & 

Faust, 1994). SNA therefore implicitly assumes that information is gained by examining 

the structure of the network that cannot otherwise be identified considering only the 

components of the network.  

There is a growing awareness of the importance of links or interdependencies in 

explaining the complexity inherent to social systems (Prell, 2012). These connections may 

be strong, weak, or absent and their strength can represent time, intensity, intimacy, and 

reciprocity (Granovetter, 1973). This makes for a rich field of research; a basic review of 

this research follows. 

2.3.3  Social Network Components. 

Wasserman and Faust (1994) described certain fundamental components used in 

modeling a social network. These include actors, relational ties, dyads, triads, subgroups, 

groups, and relations. According to Wasserman and Faust, actors are represented as nodes 

on the network and relational ties are the arcs between nodes (Wasserman & Faust, 1994). 

Dyads and triads refer to sets of 2 and 3 nodes and their inclusive arcs, respectively. Both 

dyads and triads are also subgroups, which can additionally include any number of nodes 

and their interconnecting arcs. A group is a finite set of actor nodes between which is a set 

of interconnecting arcs (Wasserman & Faust, 1994). Finally, relations are defined 
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measurements taken between nodes and are represented with relational ties or arcs 

(Wasserman & Faust, 1994). These components can be represented mathematically and the 

history of SNA includes a history of its corresponding mathematical models. 

2.3.4  Mathematical Representations of Social Networks. 

SNA has its roots in a methodology known as sociometry, or the measurement of 

interpersonal relations in small groups, developed by Moreno (Moreno, 1953) and Moreno 

and Jennings (Moreno & Jennings, 1938). Moreno represented social networks using a tool 

called a sociogram, which resembles a digraph but with additional qualitative information 

represented by size of nodes, colors, and so forth. The sociogram has been extended and 

formalized through the application of the field of mathematics known as graph theory 

(Wasserman & Faust, 1994).  

Modern social network analysts most commonly represent networks as graphs 

(Wasserman & Faust, 1994). Graphs consist of both vertices and edges that can represent 

entities and their pairwise relationships or links, respectively (Harary, 1969). The 

introduction of graph theory formalisms to SNA allowed for the development of a robust 

quantitative framework within the field (Wasserman & Faust, 1994). This was motivated 

by studies into structural balance and reciprocity in networks, specifically triad systems, 

pioneered by Cartwright and Harary (1956)  and Davis (1967) (Cartwright & Harary, 1956; 

Davis, 1967).  
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2.3.5  Social Network Analysis Centrality Measures. 

Many measures have been developed for the analysis of social networks, which 

include node centrality measures, clustering/community and modularity measures, shortest 

paths and distance measures, and adjacency matrix decompositions, among others 

(Boccaletti, Bianconi, Criado, del Genio, Gomez-Gardenes, Romance, Sendina-Nadal, 

Wang, and Zanin, 2014).  

Centrality measures are of specific interest here.  Centrality concerns finding nodes 

that have a central structural role within a network and is of broad interest in SNA 

(Boccaletti, et al., 2014). A brief survey of network centrality measures identifies node 

degree, closeness, betweenness, eigenvector centralities, and PageRank centrality 

(Boccaletti, et al., 2014), as well as stress, load and communicability centrality (Guzman, 

Deckro, Robbins, Morris, & Ballester, 2014). Each of these includes variations, which 

makes for a long list of social network centrality measures (Wasserman & Faust, 1994; 

Boccaletti, et al., 2014; Guzman, et al., 2014).  

Betweenness, closeness, eigenvector, degree and PageRank centralities were 

chosen for study in this thesis due to their low inter-correlation values and history of study 

and application (Guzman, et al., 2014; Boccaletti, et al., 2014). As a testament to the 

prevalence of these measures, MATLAB also includes built in functions for each. It is these 

functions that are used to compute the centrality values throughout this research.   

The previous sections focused on traditional SNA involving single layer networks. 

Real social networks often include more than just one relation between individuals, but 

social network models are traditionally limited to only one relation. In contrast, differing 
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social relations represent distinct layers and their combination results in what is called a 

multilayer network (Kivela, et al., 2014).  

It is increasingly apparent that multilayer network models are important across 

many scientific disciplines (Kivela, et al., 2014). The body of knowledge concerned with 

multilayer networks is commonly known as complex network theory and falls within the 

field of complexity science (Boccaletti, et al., 2014). An effective construct for 

representing complex networks may constitute the “new frontier in many areas of science” 

(Boccaletti, et al., 2014). The following sections describe the formulation and analysis of 

multilayer networks in greater detail and compare and contrast these with their traditional 

single layer network counterparts. 

2.3.6  Multilayer Networks. 

Within a social network, many relations may exist between the same set of nodes 

representing a wide variety of interpersonal or intergroup relations (Kivela, et al., 2014). 

These might include friend relations, family relations, professional or workplace relations, 

acquaintance relations, and time-varying relations (Kivela, et al., 2014). Each relation can 

be modeled as a separate set of edges, resident on a separate layer of the network. Layers 

may alternatively be categorized as similarities, social relations, interactions, and flows 

(Borgatti, Mehra, Brass, & Labianca, 2009). Further, these relations may represent 

differing strengths of connections; thus, failure to account for layers individually implicitly 

assumes interpersonal ties are identical (Hamill, Deckro, Chrissis, & Mills, 2008).  

A network that includes more than one layer is most often referred to as a multilayer 

network but has also been labeled as a network of networks, multiplex network, 
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interdependent network, and many other names (Boccaletti, et al., 2014). Subtle 

differences in meaning across authors and disciplines can be a significant cause of 

confusion (Kivela, et al., 2014). An example of a multilayer network with three layers is 

shown in Figure 2. Intra-layer edges are represented by solid lines and inter-layer edges by 

dashed lines. In a general multilayer network, inter-layer edges may connect nodes to 

different nodes directly, as represented by the diagonal dashed lines in Figure 2. 

 

Figure 2: Example Multilayer Network with Three Layers 

This study adopts the definition of a multiplex network as a special case of 

multilayer networks where a node does not connect to another node across layers, but only 

within layers; this construct is especially useful within the field of SNA (Boccaletti, et al., 

2014). Each node in this case might represent a person and each layer contains that person 

and their connections to other nodes corresponding to that layer’s relation only. A three 

layer multiplex network is shown in Figure 3. This is the same network shown in Figure 2, 

but the inter-layer edges are now restricted to connecting identical nodes between layers. 
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Figure 3: Multiplex Network Example with Three Layers 

Node alignment is the existence of the same community of actors on all layers 

within a multilayer network (Kivela, et al., 2014). Node alignment ensures that intra-layer 

adjacency matrices for each layer are of equal size, by maintaining a constant set of nodes 

in each network layer. This has the benefit of simplifying mathematical expressions, but 

can produce many nodes which are represented as being in a layer, without actually having 

any meaningful connections in that layer. Thus, node-alignment can introduce additional 

isolated nodes, or nodes which are not connected to any other nodes. Figure 4 illustrates 

this by including node four on layer two where it was not previously located. Inter-layer 

edges are drawn to the new node four, but within layer two no additional intra-layer edges 

are added. 
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Figure 4: Node-aligned Multiplex Network Example with Three Layers 

Despite this potential difficulty of isolated nodes, there is a benefit to the use of a 

node-aligned multiplex network formulation. Inter-layer edges may be understood to exist 

uniformly; therefore there is no need to store their edge values (Boccaletti, et al., 2014). In 

the cases where inter-layer edges cannot implicitly be assumed to be uniform, but node-

alignment occurs, an additional inter-layer adjacency matrix must be created. In the case 

of node-alignment this matrix—sometimes referred to as a super-adjacency matrix—is in 

ℝ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 where 𝑛𝑛 is the number of nodes and 𝑚𝑚 is the number of layers (Boccaletti, et al., 

2014).  

2.3.7  Reducibility of Multilayer Networks. 

Multilayer network reduction is a concept which has received increasing attention 

over the past few years beginning with a paper titled Structural Reducibility of Multilayer 

Networks (De Domenico, et al., 2015). The stated motivation for reducing the structure of 

a multilayer network is to reduce the computational complexity when performing network 

operations and analysis. In this sense, structural reducibility is a proposed method for pre-

processing a multilayer network to compress it (De Domenico, et al., 2015).  
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In the case of the Noordin Top dataset considered in this thesis, the computational 

savings resulting from the reduction of the number of layers is negligible, as the total 

dataset is relatively small. However, the case is easily made that larger datasets—such as 

large social media or communications datasets—may see a substantial reduction in 

subsequent network processing times if a quantity of layers can be removed from 

consideration while maintaining similar analytic results. The impact of the reduction on 

further analysis of the network is left as an open area of research by  

De Domenico et al. (2015). This thesis examines the question in the context of centrality 

rankings under the proposed rank aggregation method. 

Other reduction methods have been proposed, both quantitative (Wang & Liu, 

2017; Stanley, Shai, Taylor, & Mucha, 2016; Taylor, Shai, Stanley, & Mucha, 2016) and 

qualitative (Crawford, Gera, Miller, & Shrestha, 2016). Wang and Liu (2017) apply a 

modified version of the method described by De Domenico et al. (2015) to help identify 

community structures.  They suggest an improvement to the heuristic by using simple rules 

to eliminate certain combinations a priori (Wang & Liu, 2017).  

Taylor, et al., (2016) first develop a stochastic block modeling approach to 

selectively aggregating network layers for the purposes of reducing the network and then 

use their method to help identify communities of nodes within the multilayer network 

(Taylor, et al., 2016; Stanley, et al., 2016).  

Finally, Crawford, et al. (2016) apply a subject matter expert binning process to 

choose which layers to combine based on assumed characteristics of the networks of 



36 
 

interest (Crawford, et al., 2016). They then investigate the effects on community structures 

after reducing the network according to this process (Crawford, et al., 2016). 

The reduction method chosen for study is the method originally discussed by De 

Domenico et al. (2015), referred to as the Jensen Shannon distance (JSD) method. The JSD 

method consists of applying a distance metric to all pairs of layers of a multilayer network, 

choosing the smallest pairwise distance, aggregating the associated pair of adjacency 

matrices, recomputing the pairwise distances, and repeating until all layers have been 

aggregated into a single layer network. At each iteration, the cardinality of the set of layers 

decreases by one and a corresponding quality function is evaluated.  

The maximum value of the quality function is identified and the corresponding set 

of layers and their aggregation pattern is adopted as the (sub)-optimal reduction of the 

multilayer network. The optimal solution can only be guaranteed by a complete 

enumeration of the problem space, which is an NP-hard problem equivalent to finding all 

possible partitions of a set and scales as the Mth Bell number—or super-exponentially—

with the number of layers, M (De Domenico, et al., 2015). 

This heuristic is roughly equivalent to the agglomerative hierarchical clustering 

heuristic first given by Ward (Ward, 1963). The distance proposed in De Domenico et al. 

(2015) is the JSD. The objective function maximizes the distinguishability between the 

fully-aggregated network—considered the baseline value—and the reduced network using 

the relative Von Neumann entropy values for each network (De Domenico, et al., 2015). 

The Jensen Shannon distance is defined as the square root of the quantum Jensen 

Shannon divergence value, which is itself related to the Kulback-Liebler divergence. The 
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Kulback-Liebler divergence has been used to evaluate the similarity between networks; 

specifically, it was used to compare constructed networks to the exemplar upon which they 

are constructed (Nystrom, Robbins, Deckro, & Morris, 2015). This allowed for the 

selection of the most similar network to the exemplar despite deliberate changes to network 

features, such as overall size (Nystrom, et al., 2015).  The Jensen Shannon distance, 

however, meets more of the qualifications to be considered a metric under specific 

circumstances, though a general proof has not yet been developed (De Domenico, et al., 

2015). 

The Kulback-Liebler divergence (𝐷𝐷𝐾𝐾𝐾𝐾) is given in equation 1 (De Domenico, et al., 

2015) as: 

 𝐷𝐷𝐾𝐾𝐾𝐾(𝜌𝜌||𝜎𝜎) = 𝑇𝑇𝑇𝑇[𝜌𝜌�𝑙𝑙𝑙𝑙𝑙𝑙2(𝜌𝜌) − 𝑙𝑙𝑙𝑙𝑙𝑙2(𝜎𝜎)�] 1 

 

where 𝜌𝜌 and 𝜎𝜎 represent the combinatorial Laplacian matrices of the two graphs being 

compared (De Domenico, et al., 2015).  

The combinatorial Laplacian (ℒ) matrix of a graph is defined by De Domenico et 

al. (2015) as a diagonal matrix of the row sums of the original adjacency matrix less the 

original adjacency matrix rescaled by one over twice the number of edges. This is given by 

equation 2 as:  

 ℒ = 𝑐𝑐 ∗ (𝐷𝐷 − 𝐴𝐴) 2 
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where D is the diagonal matrix of the row sums of the nodes of the original graph, A is the 

adjacency matrix of the original graph, and c is defined as 1
2|𝐸𝐸|

 where |E| is the number of 

edges in the original graph. 

The Jensen Shannon divergence (𝐷𝐷𝐽𝐽𝐽𝐽) is a variation of the Kulback-Liebler 

divergence involving a mixed state of the density matrices (De Domenico, et al., 2015) and 

is given by equation 3 as: 

 
𝐷𝐷𝐽𝐽𝐽𝐽(𝜌𝜌||𝜎𝜎) =  

1
2
𝐷𝐷𝐾𝐾𝐾𝐾(𝜌𝜌||𝜇𝜇) +

1
2
𝐷𝐷𝐾𝐾𝐾𝐾(𝜎𝜎||𝜇𝜇) = ℎ(𝜇𝜇)−

1
2

[ℎ(𝜌𝜌) + ℎ(𝜎𝜎)] 
3 

where µ is the mixture (average) of the two density matrices ρ and σ. 

This then yields the Jensen Shannon distance (𝐷𝐷𝐽𝐽𝐽𝐽) which is defined as the square 

root of the Jensen Shannon divergence (De Domenico, et al., 2015) and shown in equation 

4 as: 

 𝐷𝐷𝐽𝐽𝐽𝐽 = �𝐷𝐷𝐽𝐽𝐽𝐽 4 

 

The Von Neumann entropy (ℎ𝐴𝐴) of a graph is given by equation 5 (De Domenico, 

et al., 2015) as: 

 ℎ𝐴𝐴 = −𝑇𝑇𝑇𝑇[ℒ 𝑙𝑙𝑙𝑙𝑙𝑙2 ℒ] 5 

where 𝑇𝑇𝑇𝑇 is the trace of a matrix and ℒ is defined in equation 2. 

 The Von Neumann entropy of a graph can also be formulated as the Shannon 

entropy of its power spectrum which is given in the following equivalence shown in 

equation 6 (De Domenico, et al., 2015) as: 
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ℎ𝐴𝐴 = −𝑇𝑇𝑇𝑇[ℒ 𝑙𝑙𝑙𝑙𝑙𝑙2 ℒ] = −�𝜆𝜆𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑙𝑙𝑙𝑙𝑙𝑙2(𝜆𝜆𝑖𝑖) 
6 

where N is the number of nodes in the graph and 𝜆𝜆𝑖𝑖 is the ith eigenvalue of the Laplacian 

matrix associated with the graph. 

The average Von Neumann entropy (𝐻𝐻�(𝒜𝒜)) across the M layers of the multilayer 

network can thus be defined as follows in equation 7 (De Domenico, et al., 2015) as: 

 
𝐻𝐻�(𝒜𝒜) =  

∑ ℎ𝐴𝐴[𝛼𝛼]
𝑀𝑀
𝛼𝛼=1

𝑀𝑀
 

7 

where 𝒜𝒜 is the set of adjacency matrices representing each layer in the multilayer network, 

𝛼𝛼 is the index referring to a given layer within the multilayer network, 𝐴𝐴[𝛼𝛼] is the adjacency 

matrix for layer 𝛼𝛼, ℎ𝐴𝐴[𝛼𝛼] is the Von Neumann entropy of layer 𝛼𝛼, and 𝑀𝑀 is the number of 

layers within the multilayer network such that 𝑀𝑀 =  |𝒜𝒜|.  

Let ℛ be defined as the set of adjacency matrices for the reduced multilayer network 

where |ℛ| ≤ 𝑀𝑀. Then the average Von Neumann entropy for the reduced multilayer 

network ℛ, (𝐻𝐻�(ℛ)) is given by equation 8 as: 

 
𝐻𝐻�(ℛ) =  

∑ ℎ𝑅𝑅[𝛼𝛼]
|ℛ|
𝛼𝛼=1

|ℛ|  
8 

 

The quality function (𝑞𝑞(ℛ)) is defined as the unit difference of the ratio of the 

average Von Neumann entropies on the reduced set of layers of the multilayer network 

against the Von Neumann entropy of the fully aggregated network. The quality function 

measures the distinguishability of the baseline fully-aggregated network compared with 

the reduced multilayer network (De Domenico, et al., 2015), and is given by equation 9 as: 
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𝑞𝑞(ℛ) = 1 −

𝐻𝐻�(ℛ)
ℎ𝐴𝐴

 
9 

where ℎ𝐴𝐴 is the entropy of the fully-aggregated graph corresponding to the linear of 

combination of the multilayer network’s adjacency matrices. 

The JSD method given by De Domenico et al. (2015) attempts to reduce the number 

of layers as much as possible while avoiding both spurious reductions and failure to reduce 

mostly redundant layers. A spurious reduction is a combination of layers which are actually 

distinct from each other and mostly redundant layers are those which are most highly 

similar to each other.  

The resulting reduction of layers is a structural reduction and the JSD method 

guarantees nothing about how the reduced network’s structure might or might not alter any 

analytic results (De Domenico, et al., 2015). This thesis applies statistical analyses to 

determine if significant changes occur to rankings of network centrality measurements 

taken on a multilayer network reduced with this method versus those taken on the original 

multilayer network.  

2.3.8  Information Gain on Multilayer Networks. 

The analysis of a multilayer network can take on several general forms: a multilayer 

network can be analyzed after a single layer is produced by aggregating or projecting the 

layers together; a multilayer network can be analyzed in its multilayer state directly; 
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alternatively, a multilayer network can be analyzed as separate layers (Boccaletti, et al., 

2014).  

The first approach—aggregating the layers of a multilayer network into a single 

layer prior to analysis—requires choosing an appropriate aggregation method. Aggregation 

refers to the summation of layer edge values to produce a single set of edge values 

(Boccaletti, et al., 2014). This single set of values produces a single network layer and 

corresponding adjacency matrix. Aggregation can be computed in several ways: binary, 

summative, and weighted. A binary aggregation is also referred to as a projection and 

yields a final single layer network with edge values equal to zero or one (Kivela, et al., 

2014). This is computed by first summing edge weights for all layers and then assigning a 

value of one if a non-zero edge weight is present; a value of zero is maintained if a zero-

valued edge weight is present.  

A summative aggregation is the simple linear combination of edge weights for all 

layers. The summative aggregation of layers thus represents a summative accounting of the 

occurrence of edges across the layers (Boccaletti, et al., 2014). The resulting edge weights 

will take on natural number values (including zero) between zero and the number of layers 

in the multilayer network.  

Weighted aggregation can be computed by first applying a uniform weight to each 

edge within a given layer.  By similarly applying such layer weights to every layer in the 

network prior to aggregation, a weighted aggregation becomes a weighted linear 

combination of edge weights between layers (Kivela, et al., 2014). Such edge weights can 
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take on any additive combination of values of weights between zero and the sum of weights 

for all possible layers.  

These different aggregation approaches will usually result in different values when 

the aggregated network is measured. Such values will also usually differ when compared 

with measures taken on the original multilayer network; this is similarly true when 

analyzing individual layers in isolation and combining results. 

Such differences suggest emergent or synergistic effects can be present between 

layers. This creates fundamental limitations on the analysis of a network without full 

knowledge of its multiplexity and thus motivates the study of multilayer networks per se 

(Brummitt, et al., 2012). A multilayer network should ideally be analyzed directly in its 

multilayer state (Cozzo, Banos, Meloni, & Moreno, 2013). However, doing so can present 

substantial challenges. 

2.3.9  Multilayer Social Network Components. 

Multilayer network models include a number of identical or similar components as 

those of single layer networks (Boccaletti, et al., 2014). Nodes, arcs, groups, subgroups, 

actors, relational ties, dyads, triads, and relations are each present in multilayer social 

network formulations since a single layer network can be considered a special case of a 

multilayer network that has only one layer.  

In some cases, the meanings of these single layer components are altered or 

extended to account for additional layers (Boccaletti, et al., 2014; Battiston, Nicosia, & 

Latora, 2014). These concepts are sometimes further altered by interpretations of possible 

interlayer connections between otherwise identical nodes. Within a multiplex network, 
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interlayer connections exist only between identical nodes on each layer, but within 

multilayer networks more generally, connections can occur between any nodes both on the 

same layer and on different layers (Boccaletti, et al., 2014). 

A key addition to this list of common single layer network components when 

modeling multilayer networks is the idea of a layer. In its simplest form, a layer includes 

everything that a single layer network does, but has the distinction within the multilayer 

network framework of being repeatable (Boccaletti, et al., 2014). In other words, while a 

single layer network consists of only one layer, by definition a multilayer network includes 

one or more layers.  

2.3.10  Mathematical Representations of Multilayer Social Networks. 

A method for including multiple relations between nodes on the same networks can 

involve defining multiple distinct edges between the same pair of nodes, with each edge 

representing a different relation shared by the pair. As the number of relations being 

represented on a multiplex network increases, the dimensionality of the necessary 

mathematical representation increases. An adjacency matrix is often used to represent 

whether an edge exists between two nodes within a single layer network.  

Adjacency matrix representations are limited to describing only a single value 

between any two nodes (De Domenico, Sole-Ribalta, Cozzo, Kivela, Moreno, Porter, 

Gomez, and Arenas, 2013). Many researchers have used aggregation to account for all 

layers using only one adjacency matrix. This process is a surjective mapping—it causes a 

one-way loss of information—as the vector value corresponding to a set of edges that 

occurs in a set of layers is reduced to the scalar value corresponding to a single summed 
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edge weight on the single aggregated layer (Kivela, et al., 2014; Boccaletti, et al., 2014). 

As illustrated in Figure 5, it is clear that the aggregation of the three layers will result in 

only one possible single layer network (for a given set of edge weights on each layer); 

however, any attempt to reverse the process produces several possible layer combinations 

which could produce the same single layer network.  

 

Figure 5: Aggregation of Network Layers 

When an additional layer is added to a multilayer network, an additional set of 

edges is created. Incorporation of additional edge sets to describe additional relations 

involves increasing the dimensionality of the corresponding adjacency matrix. A tensor is 

the more general form of a scalar, vector, or matrix. A matrix is a second order tensor, and 

therefore an increase in dimensionality can be represented more generally with a tensor 

whose order is greater than two (De Domenico, et al., 2013).  

Tensor index notation has been suggested as a succinct method of representing 

higher-dimension social network data (Kivela, et al., 2014; De Domenico, et al., 2013). To 

represent a dataset which is both ordinally-coupled along a temporal dimension and 

categorically-coupled as distinct layers representing different relationships, a sixth order 

tensor is needed in general (Kivela, et al., 2014). Still, vector and matrix representations 
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remain used when possible as perhaps a more intuitive method and will be used in this 

thesis (Battiston, et al., 2014).  

2.3.11  Multilayer Social Network Centrality Measures. 

Many single layer network centrality measures cannot be applied directly within 

the context of multilayer networks. For instance, node degree within a multilayer network 

must be represented in vector form and thus does not present a clear method to construct 

an ordered list of nodes (Boccaletti, et al., 2014). Measures such as closeness and 

betweenness are based on the structure of the network and can therefore be more easily 

translated into a multilayer setting, though they may still be complicated by any distinction 

between intra-layer and inter-layer arcs (Boccaletti, et al., 2014).  

There is therefore an interest in developing new but analogous multilayer measures 

(Boccaletti, et al., 2014). Some attempts to develop centrality measures specific to 

multilayer networks are offered by Sole-Ribalta, De Domenico, Gomez and Arenas (2014), 

Halu, Mondragon, Panzarasa, and Bianconi (2013), and Sola, Romance, Criado, Flores, 

Garcia del Amo, and Boccaletti (2013) for betweenness, PageRank, and eigenvector 

centralities, respectively (Sole-Ribalta, et al., 2014; Halu, et al., 2013; Sola, et al., 2013). 

What follows is a description of these methods. 

These three papers attempt to extend a different single layer network centrality 

measure into a multilayer network context. Each paper describes a qualitative difference 

between the single layer measure’s ranking and its multilayer variant’s rankings. Halu, et 

al. (2013) and Sole-Ribalta, et al. (2014) stop short of a statistical analysis; however, Sola 

et al. (2013) perform a non-parametric analysis using the Spearman and Kendall rank 
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correlation coefficients between rankings on the eigenvector centralities of the aggregated 

network and the proposed multiplex eigenvector centrality rankings (Halu, et al., 2013; 

Sole-Ribalta, et al., 2014; Sola, et al., 2013).  

Sole-Ribalta, et al. (2014) define their multilayer analogue to betweenness 

centrality beginning with the standard definition of betweenness centrality for a node 𝜈𝜈 as 

the number of shortest paths for all node pairs which contain  

node 𝜈𝜈 (Freeman, 1977). Their primary extension is to include interlayer edge links as part 

of the possible paths (Sole-Ribalta, et al., 2014). This accounts for individuals who serve 

as bridges or hubs between layers to be ranked more highly in relative betweenness scores 

than they might be in the aggregated network (Sole-Ribalta, et al., 2014). They examine 

only unweighted graphs, but claim edge weights can be incorporated easily with the use of 

Dijkstra’s algorithm as opposed to the breadth-first approach they take in the paper (Sole-

Ribalta, et al., 2014). Thus, a weighting scheme could be created which weights path edges 

that exist between networks, though it is left unclear how such weights should be 

developed. 

Halu, et al. (2013) created a multilayer extension to the PageRank algorithm under 

a node-aligned multiplex network structure (Halu, et al., 2013). The central idea of the 

Multiplex PageRank is that a node’s PageRank score on one layer should interact with the 

same node’s PageRank score on another layer (Halu, et al., 2013). An underlying 

assumption is that such interaction effects are positive in nature. In other words, if a node 

is not central in one layer, its overall centrality is only improved by its being central in 
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another layer (Halu, et al., 2013). Multiplex PageRank was defined in four versions: 

additive, multiplicative, combined and neutral (Halu, et al., 2013). 

The additive definition states that a node’s centrality on network A can be 

augmented by the centrality it has on network B (Halu, et al., 2013). The multiplicative 

definition states that a node’s centrality on network A involves an interaction effect 

between the centrality value on network A and that on network B (Halu, et al., 2013). The 

combined version of Multiplex PageRank centrality simply combines the additive and 

multiplicative versions. Finally, the neutral version is a reduction to the standard PageRank 

definition for each layer in isolation. Thus the PageRank for a node on network A has no 

effect on the PageRank for a node on network B (Halu, et al., 2013). With the exception of 

the neutral variety, the Multiplex PageRank centrality produces a single vector of values 

(Halu, et al., 2013).  

Sola et al. (2013) define variations on an eigenvector centrality for directed or 

undirected, unweighted node-aligned multiplex networks. They identify two scalar 

measures—the eigenvector centrality of the projection graph and the uniform eigenvector-

like centrality—and three vector measures—the independent layer eigenvector-like 

centrality, the local heterogeneous eigenvector-like centrality, and the global 

heterogeneous eigenvector-like  centrality—corresponding to eigenvector centralities for 

a node-aligned multiplex network (Sola, et al., 2013).  

The two scalar-valued measures correspond to a standard interpretation of the 

eigenvector centrality under different aggregation modes. Both of these scalar-valued 

measures assign a scalar centrality score to each node.  These are produced by summing 

the transposed adjacency matrices of each layer of the multiplex network in two ways: a 
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projection (binary aggregation) and an unweighted aggregation (linear combination) of 

network edges (Sola, et al., 2013).  

They define a projection network as the binary combination of the transposed 

adjacency matrices for the layers within the multiplex network. This then implies that the 

eigenvector centrality of the projection graph is the usual single-layer eigenvector 

centrality as measured on a binary aggregated network.  This corresponds to an unweighted 

version of the network were it represented in single layer form (Sola, et al., 2013).  

In contrast, the uniform eigenvector-like centrality is defined similarly on the linear 

combination or summative aggregation of the transposed adjacency matrices of all layers 

in the multiplex network. In this case, the aggregation network is not a binary projection, 

but rather a network whose edge weights represent the summative accounting of all edges 

present on each layer of the multiplex (Sola, et al., 2013).  

The three vector-valued measures correspond to an eigenvector centrality score on 

the full multiplex network resulting in a vector-valued centrality score for each node. 

Defining the eigenvector centrality of a network, denoted by 𝑐𝑐𝑘𝑘, as the principal 

eigenvector of the transpose of the adjacency matrix for the network’s kth layer of 𝑀𝑀 layers, 

Sola et al. (2013) first define the independent-layer eigenvector-like centrality as the matrix 

which is the augmented vector 𝐶𝐶 = (𝑐𝑐1|𝑐𝑐2| … |𝑐𝑐𝑛𝑛) (Sola, et al., 2013). Thus the vector 𝑐𝑐𝑖𝑖. 

(Sola et al. (2013) use dot notation: 𝑐𝑐𝑖𝑖. is the row vector corresponding to the ith row of 𝐶𝐶 

for all 𝑗𝑗) is the vector-valued independent-layer eigenvector-like centrality for node 𝑖𝑖.  

Next, Sola et al. (2013) introduce the concept of a directed, non-negative influence 

matrix 𝑊𝑊 which defines the level of directional influence that one layer has on another 
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layer. Though they define  𝑊𝑊 to be generally directed, their study focuses on two varieties 

of 𝑊𝑊: symmetric and asymmetric. The symmetric variety renders the graph to be 

undirected. The asymmetric topology chosen maintains a directed graph whose adjacency 

matrix’ lower triangular values are equal to the square of the reflection of the upper 

triangular values about the diagonal. In this thesis, a set of vectors of weights has been 

applied to each layer rather than the use of such an influence matrix approach. The 

influence matrix approach reduces to the vector of weights approach if the matrix 𝑊𝑊 has 

identical rows 𝑤𝑤𝑖𝑖. all equal to the chosen vector of weights. 

A local heterogeneous eigenvector-like centrality is defined as the principal 

eigenvector of the weighted transposed adjacency matrix for each layer where the weights 

are the entries 𝑤𝑤𝑖𝑖𝑖𝑖. Thus 𝑐𝑐1∗ is the principal eigenvector for the matrix given by  

𝐴𝐴1∗ = ∑ 𝑤𝑤1𝑖𝑖𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The local heterogeneous eigenvector-like centrality for the entire 

multiplex is then given as the augmented matrix of these positive, normalized eigenvectors 

represented by 𝐶𝐶∗ = (𝑐𝑐1∗|𝑐𝑐2∗| … |𝑐𝑐𝑛𝑛∗) for multiplex layers 1 …𝑀𝑀. As before, the vector 

𝑐𝑐𝑖𝑖.∗ (the row vector corresponding to the ith row of 𝐶𝐶∗) is the vector-valued local 

heterogeneous eigenvector-like centrality for node 𝑖𝑖. 

Finally, the global heterogeneous eigenvector-like centrality is defined as the 

Khatri-Rao product of the influence matrix 𝑊𝑊 and the block matrix consisting of each 

transposed adjacency matrix 𝐴𝐴𝑖𝑖 ∈ ℝ𝑛𝑛×𝑛𝑛 for layer 𝑖𝑖 of layers 1 …𝑀𝑀 given by 
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(𝐴𝐴1|𝐴𝐴2| … |𝐴𝐴𝑛𝑛) ∈ ℝ𝑛𝑛×𝑛𝑛𝑛𝑛. This product results in a block matrix of the form given by 

equation 10 as: 

 
𝐴𝐴⊗ = �

[𝑤𝑤11𝐴𝐴1] ⋯ [𝑤𝑤1𝑛𝑛𝐴𝐴𝑛𝑛]
⋮ ⋱ ⋮

[𝑤𝑤𝑛𝑛1𝐴𝐴1] ⋯ [𝑤𝑤𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛]
�  ∈ ℝ(𝑛𝑛𝑛𝑛) ×(𝑛𝑛𝑛𝑛) 

10 

where 𝑤𝑤𝑖𝑖𝑖𝑖 is an entry in the influence matrix 𝑊𝑊 and �𝑤𝑤𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖� is a matrix in ℝ𝑛𝑛×𝑛𝑛 (Sola, et 

al., 2013). 

Then, the related principal eigenvector of 𝐴𝐴⊗ is denoted as 𝑐𝑐⊗ and is a vector in 

ℝ𝑛𝑛𝑛𝑛 given by 𝑐𝑐⊗ = �𝑐𝑐1
⊗�𝑐𝑐2

⊗�… �𝑐𝑐𝑛𝑛
⊗�

𝑇𝑇
 with each 𝑐𝑐𝑖𝑖

⊗ ∈  ℝ𝑛𝑛.  Sola et al. (2013) then define 

the augmented matrix of these positive, normalized eigenvectors as the global 

heterogeneous eigenvector-like centrality and denote it as 𝐶𝐶⊗ = �𝑐𝑐1
⊗�𝑐𝑐2

⊗�… �𝑐𝑐𝑛𝑛
⊗� ∈ ℝ𝑛𝑛×𝑛𝑛 

(Sola, et al., 2013). Thus similar to before, the vector 𝑐𝑐𝑖𝑖.
⊗, (the row vector corresponding 

to the ith row of 𝐶𝐶⊗) is the vector-valued global heterogeneous eigenvector-like centrality 

for node 𝑖𝑖.  

Notably, there are challenges in defining an overall ranking of the nodes’ centrality 

when each node’s ranking is a vector-value (Sola, et al., 2013).  Defining a consistent 

ranking for vectors is not trivial (Boccaletti, et al., 2014). Prior to conducting their 

statistical comparison of rankings using Spearman’s rank correlation and Kendall’s Tau, 

Sola et al. (2013) present methods for combining their 𝑀𝑀 vector-valued eigenvector 

rankings into a single scalar-valued ranking. They apply both a convex combination and a 

simple summation of values (Sola, et al., 2013).  
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The convex combination is applied on each column for both the independent-layer 

eigenvector-like centrality matrix and the local heterogeneous eigenvector-like centrality 

matrix. The weights of the convex combination must sum to one and the weights chosen 

for each layer were uniform values for the 𝑀𝑀 layers resulting in weights of 1
𝑀𝑀

 for all layers, 

effectively producing an average eigenvector centrality score; however, these could be 

varied to represent a relative weighting scheme for the eigenvector centrality rankings 

(Sola, et al., 2013).  

A simple summation is applied to the global heterogeneous eigenvector-like 

centrality since the sum of all entries in the matrix 𝐶𝐶⊗ is one, consequentially making the 

sum of a column vector 𝑐𝑐𝑖𝑖
⊗ equivalent to the percentage of influence resident within the 

corresponding layer 𝑗𝑗 within the multiplex (Sola, et al., 2013).  

The forgoing examples are notable attempts to translate single layer network 

centrality measures into a node-aligned multiplex setting. The methodology explored in 

this thesis does not depend on any particular mathematical extension of a centrality (or any 

other) measure. This allows it to be applied more generally. 

Each of the discussed centrality measure extensions is an individually-tailored 

attempt to define a centrality measure within the context of multiplex networks. This is a 

potentially fruitful approach, but ultimately the measure of interest is really the ranking of 

the centrality measures rather than the values of the measures. In the case of the 

betweenness centrality and PageRank centrality extensions, a single vector of measured 

values is produced, resulting in a single ranking (Sole-Ribalta, et al., 2014; Halu, et al., 

2013). In contrast, the eigenvector centrality extension results in a set of vectors, which 
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must then be aggregated despite the set of rankings being representative of the larger 

multiplex structure (Sola, et al., 2013). A more broadly applicable approach may be to 

apply a general procedure for ranking centrality measures in such a way that network layer 

information is incorporated into the final centrality ranking, irrespective of the centrality 

measure used.  

This can also be useful because centrality scores are not always comparable 

between layers; the values of the scores depend on the network topology. This in turn 

creates a need for normalized versions of each measure prior to combing them. In contrast, 

when comparing the ranking of centrality values, normalization is not needed.  

As was shown in Sola et al. (2013), a simple linear combination or convex 

combination is a possible method; however, there are known shortcomings with such a 

method if one looks to the field of social choice theory. Some of these shortcomings can 

be overcome with the use of other methods to combine rankings. Such methods are 

reviewed next. 

2.3.12   Rankings. 

Rank-ordered nodes are broadly interesting within the context of SNA as they can 

contribute to an understanding of key nodes, though by themselves, they do not necessarily 

answer the key player problem (Borgatti, 2006). Still, determining the overall rank of 

importance (by some measure or combination of measures) of nodes within a network can 

be of interest to decision makers seeking to target a portion of the network either for 

influence in the case of marketing or influence operations, or for direct action in the case 

of military kinetic or law enforcement operations. Additionally, this initial evaluation of 
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ranks on a multilayer network is a potential first step to an extension into a more general 

solution methodology of the key player problem on multilayer networks. 

A ranking is an ordinal set of numbers signifying relative importance. Rankings can 

be analyzed using non-parametric methods and have successfully been used to compare 

social network measures for correlation and computational times in an attempt to identify 

the best measure for a given task (Guzman, et al., 2014). Within the context of this research, 

a ranking refers to a 1 to N ordinal list of a given measure which is determined at each of 

N nodes. Thus, it is a method which is typically defined for a single layer network. For a 

ranking method to be useful in the context of multilayer networks, an overall ranking is 

needed which accounts for the rankings which exist on each layer: a composite ranking. 

2.3.13  Social Choice Theory. 

The concept of the aggregation of rankings is not new. A literature search for the 

term ranking aggregation yields several aggregation approaches applied across a variety 

of fields (Lin, 2010). Rank aggregation has been used to inform website rankings and 

search results (Dwork, Kumar, Naor, & Sivakumar, 2001; Renda & Straccia, 2003). Rank 

aggregation has been used to build complete rankings of genetic information in 

bioinformatics studies (DeConde, et al., 2006; Pihur, Datta, & Datta, 2008). Rank 

aggregation has also been used successfully to build a combined ranking of features for use 

in neural networks (Prati, 2012). It has also been applied to decide on how to merge 

propositional logic knowledge bases (Yue, Liu, & Hunter, 2007). This thesis, in contrast, 

seeks to apply rank aggregation to a multilayer social network. It does so by surveying the 

domain which is concerned with determining exact overall rankings based on a set of 

independent rankings. This domain is known as social choice theory.  
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Social choice theory deals explicitly with identifying collective choices using 

approaches which consider general social welfare and utility. The sub-field of voting theory 

(or electoral systems theory) is the study of methods for determining winners of an election 

(Pacuit, 2017). Aggregation of rankings from each voter should ideally produce an overall 

ranking which clearly and unambiguously results in a fair assignment of the winner, first 

runner up, second runner up, and so forth (Stahl & Johnson, 2006). There is a great deal of 

literature on the topic and only a brief exposition is included in the following section.  

One broad area of interest within electoral systems is the study of preferential 

voting (Pacuit, 2017). Preferential voting, or rank-ordered voting, is a method in which 

each voter assigns a preference value to each candidate (Pacuit, 2017). This yields a 

separate rank-ordered candidate list for each voter. For the purposes of this study, the 

methods considered are restricted to preferential voting methods since it matches the 

structure of the problem: finding a rank-ordered value of critical nodes in a multilayer 

network. There is more than one way to structure a preference voting method. The two 

primary ways are through use of cardinal values and ordinal values (Stahl & Johnson, 

2006). This thesis focuses on ordinal-valued voting rather than cardinal-value voting.  This 

was done primarily for two reasons.  

First, the literature on cardinal voting methods is much sparser. Second, when 

analyzing cardinally-valued rankings, the need for normalization between voters’ rankings 

arises to ensure each voter’s ranking is weighted equally (Stahl & Johnson, 2006). This is 

a daunting problem when considering voting preferences between people (Stahl & 

Johnson, 2006). It can still introduce challenges when the cardinal values represent network 

centrality measures. Each measure must first be normalized for comparison. Normalization 
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techniques can vary depending on whether disconnected components are considered. 

Nevertheless, the cardinal-valued rankings contain more information than their 

corresponding ordinal-value rankings; a measure of magnitude in preference relations 

between candidates is maintained (Stahl & Johnson, 2006). Therefore, application of 

cardinal-valued preferential voting methods to SNA is likely to be of interest in future 

works. 

Within the domain of ordinal-valued rank-ordered voting, many different methods 

have been developed (Pacuit, 2017). Methods within voting theory are evaluated based on 

a series of criteria considered to be important to the idea of a free and fair election (Stahl 

& Johnson, 2006). This section briefly surveys methods within voting theory and which 

criteria they satisfy or fail. The count of satisfied or failed criteria for a given method is 

then used as a proxy to determine applicability of the method to the specific problem of 

ranking critical nodes on a multilayer network. The first criterion considered is the 

monotonicity criterion. 

The monotonicity criterion requires that the addition of a worse (better) vote for a 

candidate should not be able to improve (harm) their outcome (Pacuit, 2017). Any method 

which fails the monotonicity criterion was immediately discarded as being inappropriate 

for modeling the problem at hand. If a network layer is added to the multilayer network in 

which a node is ranked more highly than it is in other layers all other things being equal, 

then it is undesirable for that node to move down in the overall ranking.  

Computational complexity is an important consideration. Most algorithms in voting 

theory can be computed in polynomial time. One exception is the Kemeny Young method, 

which has complexity 𝑂𝑂(𝑁𝑁!) where 𝑁𝑁 is the number of candidates (Young & Levenglick, 
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1978). This study treats nodes as candidates, and this method would therefore require on 

the order of 139! Evaluations to compute. This is a computational feat that is clearly 

impossible with modern computing methods and so this method was discarded for this 

study.  

Nevertheless, it should be noted that the study of the Kemeny Young method is 

important theoretically because it represents the maximum likelihood estimator for an 

aggregated ranking by determining an overall ranking which is at a minimum distance from 

all input rankings (Young & Levenglick, 1978) (Young, 1988). Thus there is extensive 

interest in this method and several approximation techniques have been developed as will 

be discussed further.  

Having thus discarded a number of possible methods, five methods remained for 

consideration which do satisfy a majority of established voting criteria. These are the 

Borda, Copeland, Minimax, Schulze, and Tideman methods. Each is now considered in 

turn. 

The Copeland method fails the resolvability criterion. The resolvability criterion 

requires that a tie between two candidates should be decidable with the addition of a single 

tie-breaking vote in favor of one of the candidates (Schulze, 2011). This is a desirable 

criterion for a ranking method as it can help eliminate tied values, or at least help decide 

the winner of a tie when it arises. Decidability is important when considering the context 

of building a list of critical nodes, potentially for targeting purposes under resource 

limitations. 
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The Borda method fails the Condorcet criterion, and the majority criterion (Pacuit, 

2017; Stahl & Johnson, 2006). Failure of the majority criterion also implies failure of the 

mutual majority criterion. The Condorcet criterion requires that if a node exists which is 

considered better than any other node in a head-to-head comparison, that node must be the 

overall winner (Condorcet, 1785). The majority criterion similarly requires that if a 

candidate is preferred by a majority of voters, that candidate must win (Schulze, 2011). 

The mutual majority criterion is a stronger version of the majority criterion which states 

that if there is a set of candidates which is item-wise preferred by a majority of voters to 

all candidates outside of the set, then the overall winner must come from the winning set 

(Schulze, 2011). Each of these is a meaningful criterion in the context of computing 

rankings for a multilayer network. Violation of any would call into question the validity of 

an overall ranking of nodes.  

The Minimax method fails the Smith criterion, the mutual majority criterion, and 

the Condorcet loser criterion (Smith, 1973). The Smith criterion states that any winner must 

come from the Smith set (Smith, 1973). The Smith set is defined as follows: partition the 

set of candidates into two disjoint subsets such that any node from set one will always 

pairwise defeat any node from set two. If such a partition is possible, then the set of 

pairwise winners is the Smith set (Smith, 1973). The Condorcet loser criterion requires that 

any candidate which is pairwise defeated by each other candidate cannot be the overall 

winner (Schulze, 2011). This is a logically desirable characteristic in the context of 

identifying critical nodes. 

Thus we are left with the Schulze and Tideman methods, both of which satisfy all 

previous criteria described (Schulze, 2011; Tideman, 1987). Both the Schulze and the 
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Tideman methods additionally satisfy Independence of Smith-dominated alternatives 

ISDA) (Schulze, 2011).  The ISDA criterion requires that an added candidate will not 

change the winner as long as the added candidate is not a member of the Smith set.  

The Schulze method fails the local independence of irrelevant alternatives (LIIA) 

criterion while Tideman’s ranked-pairs method does satisfy LIIA. LIIA is the only criterion 

for which the Schulze and Tideman methods differ in performance. The LIIA criterion 

guarantees that the rankings will remain consistent if a node is removed from the network. 

Despite the Schulze method being slightly less generally applicable in this regard, it is 

directly related to the common network problem of identifying all shortest paths (Schulze, 

2011; Pollack, 1960). Thus it was chosen as the primary voting method under study.  

Establishing the applicability of voting theory criteria to the problem of ranking 

critical nodes on multilayer networks is not necessarily straightforward. It may be argued, 

alternatively to the arguments presented here, that a criterion which is important in the 

context of voting on political candidates does not matter in the context of ranking centrality 

measures. In this case, some methods which were removed from consideration may still 

yield useful rankings. Acknowledging this, the Borda count method was considered for 

additional comparison due to its longtime use and ease of implementation: the Borda 

method is a linear combination of rankings (Stahl & Johnson, 2006; de Borda, 1770/1781). 

Thus, researchers may apply the Borda method without acknowledging (or perhaps 

knowing) that it is named as such (Sola, et al., 2013).  

This thesis borrowed from the social choice theory literature to apply a 

deterministic method for aggregating vector-valued node rankings to produce a scalar-

valued node ranking for each node on a node-aligned multiplex network. A literature 
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review revealed few previous applications of social choice theory to the analysis of a social 

network. One application sought to improve rankings of influential nodes on a Twitter data 

set by aggregating rankings from individual measures (Subbian & Melville, 2011). Another 

sought to predict links in a dynamic network over time by incorporating ranking 

information on topological measures (Pujari & Kanawati, 2012). Both used weighted 

(supervised) variants of the Kemeny Young method and the Borda count method.  

Pujari and Kanawati (2012) applied a similar method but with the goal of predicting 

changes in links on a dynamic co-authorship network. However, once again their study was 

limited to an investigation of a single layer network (Pujari & Kanawati, 2012).   

Subbian and Melville (2011) chose weights based on an objective measure of 

performance for each network measure considered against a ground truth data set. Thus 

their rankings served as an interesting approach to aggregation of rankings of network 

measures according to how good the measure is. However, their study was limited to a 

single layer Twitter network dataset (Subbian & Melville, 2011). Since the ultimate goal 

of identifying influential network members aligns well with this thesis, Subbian and 

Melville’s approach is discussed in more detail.  

Subbian and Melville (2011) restricted their study to rankings with no tied values; 

thus, they broke all ties prior to computation of rankings and did so randomly (Subbian & 

Melville, 2011). However, in social networks, especially dark networks, there may exist 

disconnected components and isolated nodes (Morris & Deckro, 2013). Such disconnected 

components and nodes often result in tied values when computing centralities, which then 
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result in tied rankings. Rather than immediately attempt to remove such tied values, this 

thesis investigates ways to work with them and still yield useful results.  

Subbian and Melville apply the Kemeny Young method to their problem in part 

because it has been proven to represent a maximum likelihood estimator (Subbian & 

Melville, 2011; Young & Levenglick, 1978). Unfortunately, finding a Kemeny Young 

ranking is an NP hard problem for 𝑁𝑁 ≥ 4, making it impractical without applying 

approximation methods. (Bartholdi, Tovey, & Trick, 1989; Dwork, et al., 2001). 

Approximation techniques have been developed and were applied by Subbian and Melville 

(2011) (Schalekamp & van Zuylen, 2009; Ailon, Charikar, & Newman, 2008; Subbian & 

Melville, 2011). However, approximation techniques may not yield optimal solutions.  

Voting theory seeks a precise, deterministic winner in an election, as credibility of 

elections depends on such a result (Stahl & Johnson, 2006). Applying a heuristic to a voting 

method can arguably negate this original intent. This may be argued to be a sound approach 

when extending voting theory into social network analysis, but this thesis attempts to 

maintain such original intent by considering only methods which yield exact solutions in 

polynomial time.  

Both Subbian and Melville (2011) and Pujari and Kanawati (2012) considered the 

aggregation of rankings based on separate measures, but not the aggregation of rankings 

based on separate networks—i.e. an application to the domain of multilayer networks. This 
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thesis is apparently the first such application in the literature. It thus provides a significant 

contribution to the field of social network analysis.  

2.3.14  Schulze Method. 

Not all criteria which are relevant in the context of an electoral system are 

necessarily relevant to the idea of this thesis: that a layer can cast a vote (weighted or 

unweighted) on the ranking of a set of nodes under some measure. The desired outcome is 

solely a ranking of multilayer network nodes of interest for further analysis or action. This 

is not a political outcome which might desirably be held to some ideal of democratic 

fairness. Nevertheless, as a point of entry, this methodology adopts the Schulze method—

which satisfies the greatest number of criteria while being solvable in polynomial time 

using a modification of a common network algorithm—and applies it to the problem of 

compositing rankings of measures on a multilayer network.  

The Schulze method is a rank-ordered voting method which produces a self-

consistent composite ranking of candidates based on input rankings from each voter 

(Schulze, 2011). Voters must consistently use either an ascending or a descending number 

line ordering of the candidates, but it allows for voters to assign any value to the candidates, 

including tied values (Schulze, 2011). If tied values are assigned, they are treated as equal 

vote preferences. 

In the case of a descending order ranking, larger (smaller) numbers on the number 

line imply a larger (smaller) preference; the value of the number is ignored and only the 

relative ordering of preferences is considered (Schulze, 2011). A tie represents a voter’s 

indifference between the candidates. If a candidate is not given a value, this is interpreted 
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as the voter strictly preferring all marked candidates above any unmarked candidate. All 

unmarked candidates are considered to be tied (Schulze, 2011). 

Once a complete listing of votes is received, the Schulze method counts all 

preference relationships and stores the values in an asymmetric adjacency matrix 

representing a directional graph whose weights are the count of the directional preferences 

of each candidate to all others (Schulze, 2011). A directional preference is defined as a 

node being ranked as strictly better than another node. For example, if candidate A is 

preferred to candidate B seven times while candidate B is preferred to candidate A four 

times, the adjacency entry (A,B) is set to 7 and entry (B,A) is set to 4.  

This preference matrix is then subjected to a strongest path algorithm (Schulze, 

2011). The strongest path algorithm is a variation of the shortest path algorithm that instead 

of a shortest path, identifies the best path which allows for maximum path size between 

two nodes where the path sizes are given by the weights on each arc (Pollack, 1960). Thus, 

the strongest path from node A to node B is the path with the maximum minimum edge 

weight.  Once all strongest paths are calculated, the number of strongest paths a node 

belongs to is interpreted as the overall score for that node (Schulze, 2011).  

Within every possible pair, the winner is determined by comparing their two entries 

in a matrix of strongest path values. Each pairwise winner is indicated in a binary winner 

matrix. The row sum of the winner matrix represents the overall scores for each candidate. 

The candidates are then ranked according to this overall score, yielding a composite 

ranking (Schulze, 2011). This entire process is summarized in Figure 6. 
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Figure 6: Overview of Schulze Voting Method 

By using this approach, measures which are more difficult to extend into a 

multilayer network context—such as degree centrality (Boccaletti, et al., 2014)—can be 

computed to form composite rankings which are representative of the multilayer network 

structure and are ultimately of more interest than the scores themselves. Beyond individual 

centrality measures, any measure that can be computed for each node within a multilayer 

network can be ranked using this method. Thus, this methodology is in theory not limited 

to individual centrality measures, but could also be based on any function of centrality 

measures. It could alternatively be applied to other qualitative or quantitative nodal 

measures considered to be important to the network analysis. This is true as long as the 

measure can be used to produce a ranking for each node on each layer. Although it is more 

broadly applicable, this thesis’ scope is limited to network centrality rankings, 
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demonstrating that results can be computed on each layer individually and then combined 

in such a way as to arrive at a meaningful overall ranking for the multilayer network.  

2.4   Summary 

SNA is a well-studied field which continues to yield important applications and 

theoretical advances. It is based on the application of graph theory to sociograms which 

represent people and their relational links (Wasserman & Faust, 1994).  

The extension of network analysis to include multidimensional, multilayer, or 

multiplex networks has shown significant advances in application, as real world networks 

can seldom be well-represented by only one layer (Kivela, et al., 2014). Indeed the 

multilayer network framework yields additional degrees of freedom which give rise to new 

phenomena which cannot occur under the previous framework of ordinary single layer 

networks (Kivela, et al., 2014).  

The addition of layers within large network datasets can create computational 

difficulties and thus methods have been sought to reduce the number of layers while 

maintaining similarity to the original dataset (De Domenico, et al., 2015).  

Many SNA measures exist and several of the classic single layer measures have 

been extended to fit multilayer formulations as well (Martin & Porter, 2012; Sola, et al., 

2013; Sole-Ribalta, et al., 2014; Voros & Snijders, 2017). Analytic techniques from linear 

algebra have been extended to include not only matrix representations of traditional single 
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layer networks, but also tensor representations of multilayer networks (De Domenico, et 

al., 2013; Kolda & Bader, 2009).  

Network centrality measures can be used to identify a prioritized list of nodes of 

interest within a network and some attempts have been made to extend centrality measures 

to multilayer networks (Boccaletti, et al., 2014; Halu, et al., 2013; Iacovacci & Bianconi, 

2016; Sola, et al., 2013; Sole-Ribalta, et al., 2014; Kivela, et al., 2014).  

Voting theory provides possible tools for generating a generic multilayer network 

ranking of nodal measures independent of the mathematical extensions of particular 

centrality measures. The Schulze voting method is one tool that produces a unique and 

meaningful list of rankings when applied to several lists of rankings (Schulze, 2011). In 

this thesis it is applied in the context of multilayer SNA to create a composite ranking of 

nodes for a multilayer network.  

This chapter discussed a review of literature relevant to an understanding of 

background material and tools applied in this thesis. Next, a detailed methodology of this 

research is described.  
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III. Methodology 

 

3.1   Chapter Overview 

As Chapter II detailed, multilayer networks can be used to contain more 

information than single-layer networks as each layer represents a distinct connection 

pattern for a given connection type (Kivela, et al., 2014; Boccaletti, et al., 2014). Each 

layer also increases network size and brings with it additional computational costs. The 

ability to aggregate, or combine, layers in such a way that information is not lost while the 

final number of required layers is minimized is a desirable goal as the size of the networks 

under consideration increases. 

With the addition of these new network layers, however, more computational 

difficulties can arise when performing calculations on the full network (De Domenico, et 

al., 2015). Each new layer adds another set of nodes which needs to be measured. 

Depending on the construction of the multilayer network, inter-layer connections may also 

be present and these would require additional data storage and processing (Boccaletti, et 

al., 2014). Methods for combining—or aggregating—redundant layers while 

simultaneously maintaining as much useful information gained from the additional 

network layers as possible is thus desirable. However, the concept of useful information 

needs to be studied further. This methodology therefore investigates the effects of this 

reduction process on resulting network centrality rankings under various conditions.  

To do this, the quantum Jensen Shannon distance reduction method proposed by 

De Domenico et al. (2015) was applied to the studied dataset on individual time stamps 
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and upon the network which was first aggregated along the time dimension. Composite 

network centrality rankings were computed on the resulting networks and these composite 

rankings were statistically compared to composite rankings computed with the full 

multiplex network and the fully-aggregated single layer network. 

Additionally, the Schulze composite methodology was varied by applying vote 

weight distributions and by computing an overall composite of the five composited 

rankings, one for each centrality measure. This was done on the full multiplex and the 

reduced multiplex. This same process was similarly used on the fully-aggregated network 

centrality rankings under the same vote weight distributions. These rankings were then 

compared for statistical differences and correlations. 

Further, correlations were computed for each time stamp for each composite 

centrality ranking for the full and reduced multiplexes. These were computed for the 

aggregated rankings as well and for each of the five centrality measures. The forgoing was 

accomplished under unweighted layer aggregation and under a layer weight distribution. 

Changes to implied stability—high time series correlation—of these rankings over time 

were investigated and compared. Finally, rankings were compared qualitatively to assess 

relative inclusion of known key members of the network within the top 20 ranked positions.  

3.2  Research Questions 

 3.2.1  Comparative Statistical Questions. 

For the full multiplex network with no timestamps (a single unweighted 12 layer 

multiplex): 
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1. Do the Schulze method’s composite rankings significantly differ from the fully-

aggregated single layer network’s rankings using the Friedman test at the 𝛼𝛼 = 0.05 

level?   

a. Does this hold for each centrality measure? 

2. Do the Schulze method’s composite rankings for the full multiplex network differ 

significantly from the Schulze composite rankings for the reduced multiplex 

network using the Friedman test at the 𝛼𝛼 = 0.05 level? 

a. Does this hold for each centrality measure? 

3. By applying the three vote weight distributions shown in Table 2 to the Schulze 

method, are significant changes to the Schulze rankings observed using the 

Friedman test at the 𝛼𝛼 = 0.05 level? 

a. Does this hold for each centrality measure? 

4. If an overall composite ranking is defined as the Schulze composite ranking of the 

individual Schulze rankings for each network measure, do the unweighted overall 

composite rankings significantly differ from the overall composite rankings under 

each weight distribution in Table 2 using the Friedman test at the 𝛼𝛼 = 0.05 level?  

a. Do they differ from the overall aggregated rankings built by running the 

Schulze method on the fully-aggregated single layer network’s rankings for 

all centrality measures using the Friedman test at the 𝛼𝛼 = 0.05 level? 

 3.2.2  Correlative Statistical Questions. 

For the time-stamped network array of 120, 12 layer multiplex networks: 
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5. How are changes in the implied stability of the five centrality measures’ 

correlations over time impacted by use of the Schulze composite rankings, as 

measured by the Spearman rank correlation coefficient and sign test at the 𝛼𝛼 = 0.05 

level? 

a. Does this hold for the both the full and the reduced multiplex networks? 

For the full multiplex network with no timestamps (a single, unweighted 12 layer 

multiplex): 

6. By applying the three vote weight distributions in Table 2 to the Schulze method 

and comparing results, are significant correlations between rankings for each 

weight observed using the Spearman rank correlation at the 𝛼𝛼 = 0.05 level? 

a. Does this hold for each centrality measure? 

7. If an overall composite ranking of all centrality measures is compared against the 

composite rankings for each centrality measure, are significant correlations among 

the rankings observed using the Spearman rank correlation at the 𝛼𝛼 = 0.05 level? 

a. What correlations occur if the overall composite is produced from 

composites for each measure computed under the three weight 

distributions?  

 3.2.3  Qualitative Questions. 

For the full multiplex network with no timestamps (a single, unweighted 12 layer 

multiplex): 

8. How do the final lists of network members in the top 20 ranked positions compare 

for each centrality measure? 
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a. Between the Schulze method’s rankings and aggregated method’s rankings?  

b. Between the overall composite rankings and the aggregated network’s 

rankings? 

c. When considering the three weight distributions? 

d. Between the Schulze method and the Borda count method? 

3.3   Materials and Equipment 

All work was completed on a HP Z840 desktop computer with 64 gigabytes of 

RAM. MATLAB R2016a was used for all computations (MATLAB, 2016). 

3.4   Data Description 

The data used for this study represent a terrorist network located largely in 

Indonesia. Noordin Mohammed Top was the leader of the conglomeration of terrorist 

groups operating in the area and the network is eponymously referred to as the Noordin 

Top network, or simply as the Noordin network. The datasets are published as appendices 

in books authored by faculty of the Naval Postgraduate School, compiled from open source 

data and relying heavily on a report issued by the International Crisis Group which details 

the network’s operational and personnel history (International Crisis Group, 2007; 

Cunningham, et al., 2016; Everton, 2013). 

The data were received originally as two separate databases. The first is a timeline 

of 120 timestamps each representing one month beginning on January 1, 2001 and ending 

on December 31, 2010 (Everton, 2013). The ten year span of timestamp data represent 

which of a possible 139 network actors were known to be actively present in the network 

during each month. Activity begins with the first known mention of the actor as a part of 
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the Noordin Top network and ends either when the actor is killed or captured and thus 

removed from active participation. If the actor is captured and subsequently released, they 

are included once again within the network (if they are known to have reentered into 

participation). Thus, there may exist several starts and stops for a given actor which may 

result in gaps within their activity timeline (Everton, 2013). 

The second database consists of relational information between the actors within 

the Noordin network consisting of both one-mode and two-mode networks (Cunningham, 

et al., 2016). A one-mode network is a network wherein the set of nodes is compared 

against itself creating a square adjacency matrix.  In the case of the Noordin network, a 

one-mode network is a 139 by 139 node adjacency matrix which identifies whether a 

particular actor is adjacent to another actor for a given relationship.  

A two-mode network, in contrast, is a network wherein the set of nodes is compared 

against some other set of features. This may result in a non-square adjacency matrix. For 

example, within the dataset, the actors are compared against a set of 14 named operations. 

In this case, the adjacency matrix is a two-mode 139 by 14 matrix with an adjacency entry 

representing whether a particular actor is known to have participated in a particular 

operation (Cunningham, et al., 2016). 

One-mode networks within the dataset were used as given to represent a layer 

within the final multilayer dataset and two-mode networks were pre-processed to become 

one-mode networks prior to inclusion. Pre-processing the above example consisted of 

identifying actors who participated in the same named operations. These actors were then 
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inter-linked in a new one-mode adjacency matrix where each entry represents whether 

actors were co-participants in any given operation.  

During data processing, 12 one-mode adjacency matrices representing 12 different 

relationship types were ultimately compiled. These relations include business, classmates, 

communications, friendship, kinship, logistical function, logistical location, meetings, 

operations, organizations, soulmates, and training.  Maintaining alphabetical order, these 

layers are also referred to as layers 1 through 12, respectively. 

The business layer was originally a two-mode network and represents whether 

actors were engaged in the same business activities. The classmates layer was originally a 

one-mode network and indicates whether actors attended school together. The 

communications layer was originally a one-mode network and captures whether an actor 

communicated directly with another actor. The friendship layer was originally one-mode 

and is simply whether any two actors were considered to be friends. Similarly, the kinship 

layer was one-mode and indicates familial relations between actors. The logistical function 

layer was a two-mode network detailing logistical roles that each actor is known to have 

played. The logistical place layer was a two-mode network which describes logistical 

locations with which a given actor was involved. The meetings layer was a two-mode 

network of known significant meeting participation by the actors. The operations layer was 

a two-mode network representing in which operations an actor participated. The 

organizations layer was a two-mode network listing to which sub-organizations within the 

Noordin Top network each actor belonged. The soulmates layer was a one-mode network 

identifying whether an actor attended the same religious institution as another actor. 
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Finally, the training layer was a two-mode network which labels actor participation in a 

series of identified training events. This is summarized in Table 1. 

Table 1: List of Network Layers 

 

This 12 layer multilayer network can be thought of as an aggregation over the entire 

recorded time period of the Noordin network’s operations. To transform it into a time-

stamped multilayer network, the 12 layers are combined with the timestamped data. This 

combination is accomplished by treating the timestamps as an indicator variable and item-

wise multiplying the 12 adjacency matrices by the indicator values. If a node’s indicator 

value at a given timestamp is 1, then that node’s adjacency values are included in the 

multilayer network at that timestamp. If a node’s indicator value at a given timestamp is 0, 

then that node’s adjacency values are not included. 

Effectively, because adjacency matrix entries represent a relation between two 

nodes, a logical AND operation is used. If both node A and B are present in that timestamp, 

then the adjacency entry for pair (A,B) is allowed to exist (it may still turn out that A and 
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B are not linked and will thus have an entry of zero). If either A or B are not present in that 

timestamp, then the adjacency entry for pair (A,B) will not exist; it is forced to zero. This 

is summarized by equation 11 as:  

 𝐴𝐴𝑛𝑛(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏), 𝑡𝑡 =  𝐴𝐴𝑛𝑛(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏) ∗ (𝐼𝐼𝑛𝑛𝑎𝑎𝑡𝑡  ∗ 𝐼𝐼𝑛𝑛𝑏𝑏𝑡𝑡) 11 

where 𝐴𝐴𝑛𝑛 is the 𝑚𝑚𝑡𝑡ℎ adjacency matrix for the 𝑀𝑀 layers of the multilayer network, 𝑛𝑛 is a 

node in the network, 𝑡𝑡 is the timestamp being considered, and 𝐼𝐼𝑛𝑛𝑡𝑡 is the indicator variable 

for whether node 𝑛𝑛 is in the network at time 𝑡𝑡. 

Once this item-wise logical multiplication is accomplished, the result is 120 

separate 12-layer multilayer networks. For each timestamp, the multilayer network consists 

of entries for all 12 relationship types (layers) which allow non-zero edge weights for only 

those actors who were an active part of the Noordin network during that timestamp. 

3.5   Data Processing 

To produce the 120 layer time-stamped multiplex network, the full network array 

was aggregated only along the aspect dimension for each timestamp. This was done in two 

ways. The first method performed a simple summative aggregation—a unit-weighted 

linear combination of adjacency matrices—resulting in edge weights which represent the 

count of identical edges among all 12 layers for each timestamp. The second method 

performed a weighted aggregation—a non-unit-weighted linear combination of adjacency 

matrices—resulting in edge weights which represent the weighted count of identical edges 

among the 12 layers at each timestamp. This was done for three weight distributions as 

described in section 3.8. 
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The weighted and unweighted aggregation methods were applied to build 

aggregated data for comparison against layer-reduced networks under different layer 

weight distributions. The layer-reduction process is described next.  

The Jensen Shannon distance reduction method was employed on each of the 

timestamps of the 120 layer time-stamped multiplex network to reduce the 12 layer 

multiplex to an R-layered reduced multiplex where |𝑅𝑅| ≤ 12. Thus the cardinality of the 

set of layers for the reduced multiplex was allowed to vary with each timestamp. This was 

done for both the non-unit-weighted and unit-weighted multiplex layers.  

A non-timestamped network was also analyzed. This consisted simply of the 

original 12 layer multilayer network, with no changes. 

3.6   Node Alignment and Isolates 

The data process described above creates a node-aligned multiplex network where 

each adjacency matrix is a 139 by 139 matrix, thereby representing all possible actors on 

the network. This size is invariant regardless of whether the actor exists in that timestamp 

or not. In other words, the multilayer network is fully node-aligned. This allows for a 

simpler representation of the network, but can introduce artificial isolates. A node which 

has no incoming or outgoing edges within the network is an isolate. Thus for a given layer 

at a given timestamp, there may exist both induced or artificial isolates in addition to natural 

or true isolates.  

Here a true isolate is considered to be a node which is part of the network at the 

given timestamp but does not have any recorded relationship with any other node 
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coincident at that timestamp. An artificial isolate, in contrast, does not truly exist at the 

given timestamp, but remains represented within the node-aligned adjacency matrices. 

Thus true and artificial isolates are indistinguishable within this representation and are 

treated as equivalent under this methodology. This introduces some error into the 

methodology and its impacts and potential solutions will be discussed in  

chapters IV and V.  

3.7  Ranking Methods 

Once the data have been processed to produce the eight by three arrays summarized 

in Table 3, statistical comparisons were made both between methods of aggregation—

weighted versus unweighted—and between use of the full multiplex, JSD-reduced 

multiplex, and the fully-aggregated network. The values chosen for comparison are five 

rank-ordered centrality measures comprising betweenness, closeness, eigenvector, degree, 

and PageRank centralities. This list of centrality measures was informed by the analysis by 

Guzman et al. (2014) which indicates that these five measures are not highly correlated 

among themselves (Guzman, et al., 2014).  

Comparisons were conducted along both dimensions of the data: the time 

dimension and the relation dimension.  Each 139 by 139 adjacency matrix was reduced to 

a single 1 to 139 node ranking for each of the five centrality measures. Thus along the 

relational dimension, 12 rankings of length 139 were computed for the full multiplex. For 

the reduced multiplex, anywhere from 1 to 12 rankings were potentially computed for each 

of the five centrality measures. For the aggregated network, a single 1 to 139 nodal ranking 

was computed for each of the five considered measures.   
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For the full multiplex data, a 120 by 12 multiplex array of rank vectors of length 

139 was produced. The comparisons along the aspect dimension were thus achieved by 

comparing rankings between columns for each time stamp. These rankings were computed 

across all layers for all timestamps and thus a comparison along the time dimension of the 

120 by 12 multiplex array is achieved by similarly comparing the rankings between rows 

for each layer.  

Composite ranks were computed for each of the five measures within each 

timestamp for both the full multiplex data array and the reduced multiplex data array. These 

time-stamped ranks were investigated for correlation patterns. 

3.8   Weighting Methods 

When conducting an analysis of a social network, edge weights are often defined 

to have unit values; however, different edge weights can alter the resulting value of the 

measure. This is true when both measuring a single layer network as well as when 

considering the relative importance of each layer of a multilayer network. The aggregation 

of a unit-weighted multilayer network is the unit-weighted sum—linear combination—of 

associated adjacency matrices. The aggregation of a weighted multilayer network is 

similarly the weighted linear combination of the associated adjacency matrices. 

The weights representing the relative importance of each layer to the analysis might 

be drawn from analytic expertise, either as the output of some other analysis, or as the 

result of elicitation of a subject matter expert’s assessment. 
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3.8.1  Vote Weighting. 

Weights were applied to each layer’s ranking, effectively giving each layer a 

number of votes based on its weight. This is referred to as vote weighting. In this second 

case, the weights must be integer-valued. In the case of assigning layer weights as edge 

weights on the adjacency matrix prior to aggregation, there is no such integer restriction. 

The Schulze method is a proportional method, however, meaning that the weights are only 

important on a relative scale, and not in terms of their actual values. In other words, any 

non-integer weights can be scaled to produce a common set of integer weights as a series 

of least common multiples. This maintains the same relative proportions—yielding the 

same results—and satisfies the integer requirement under the Schulze voting method 

methodology for layer weighting. 

To emphasize the utility of applying weights in such a manner, three distinct 

distributions of relative weights were selected and applied. Each corresponds to an 

emphasis on a certain conceptual grouping of aspect types, borrowing from a similar idea 

proposed by (Crawford, et al., 2016). Instead of partitioning the layers into disjoint sets 

representing trust, lines of communication, and knowledge as do Crawford et al. (2016), 

three different groupings were produced which were assigned distributions of weights and 

retained all layers within each distribution. The first emphasizes location—or actual 

physical proximity—of actors within the network. The second emphasizes operations—

participation in the same operations—of actors within the network. The third emphasizes 

personal ties between actors within the network.  
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The range of weights assigned for each of the three distributions was limited to 

integer values between one and three for comparison. These represent a truly relative and 

additive scale and can be derived using any weighting method which assures such a scale 

is produced. Thus, layers with a value of two and three were weighted 100% and 200% 

more heavily than the baseline, respectively. Weights were applied with consideration of 

how each layer’s aspect might contribute to the distribution of interest. In other words, the 

contextual meaning of each layer was used to scale each layer’s weight in this study.  

The first distribution is the location distribution which is given by the vector  

[2 2 1 1 1 1 3 3 2 2 3 3]. Thus, layers 7, 8, 11, and 12 were given the largest weight. These 

are logistic place, meetings, soulmates, and training. Each refers directly to actors being 

recorded in the same physical location at the same time.  Layers 1, 2, 9, and 10 were given 

the intermediate weight. These are business, classmates, operations, and organizations. 

These include aspects which encourage location but don’t explicitly refer to it. Layers 3, 4, 

5, and 6 were allocated the baseline weight. These are communications, friendship, kinship, 

and logistic function. Though friendship and kinship do often imply location at some point 

in time, they do not necessarily imply location during the timeframe of the dataset. 

Likewise communications and logistic function are not necessarily related to location. 

The second distribution is the operations distribution which is given by the vector 

[1 1 2 1 1 3 3 3 3 2 1 3]. Thus layers 6, 7, 8, 9, and 12 were given the largest weight. These 

are logistic function, logistic place, meetings, operations, and training. Operations and 

training are directly related to operations. Meetings in this context are meetings for 

planning operations and are thus included. Logistics functions are likewise crucial to 

operations. Layers 3 and 10 were assigned the intermediate weight. These are 
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communications and organizations. All those who are communicating are not necessarily 

sinvolved in operations, though they may likely be tangentially involved; likewise for 

relevant organizations within the dataset. Layers 1, 2, 4, 5, and 11 were given the baseline 

weight. These are business, classmates, friendship, kinship and soulmates. While an 

argument could be made that business fronts are related to the operations in terms of 

money-laundering in support of operations, they are considered here to be more loosely 

connected. Friendship, kinship, and soulmates are personal relationships which are 

considered to transcend particular operations.  

The third distribution is the personal ties distribution and is given by the vector  

[1 3 1 3 3 1 1 1 1 1 2 2]. Thus layers 2, 4, and 5 are given the largest weight. These are 

classmates, friendship, and kinship. These three were deemed the most personal or intimate 

ties recorded within the dataset as they refer to long-standing or very personal relationships. 

Layers 11 and 12 were given the intermediate weight. These are soulmates and training. 

Co-participation in religious and operational training can build deep bonds through small 

group dynamics. Layers 1, 3, 6, 7, 8, 9, and 10 were assigned the baseline weight. These 

are business, communications, logistic function, logistic place, meetings, operations, and 

organizations. These are likely only tangentially related to any personal relationships. The 

three weight distributions are summarized in Table 2. 
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Table 2: Table of Weight Distributions 

 

The point of the use of these weight distributions was not to establish an ironclad 

method for establishing the distributions themselves, but rather to demonstrate the method 

and the effects of the distributions on the outcomes of the rankings under this methodology. 

Specifically of interest was whether there were statistically significant differences of 

rankings under each weight distribution and whether there were meaningfully different 

outcomes of which nodes were ranked highest under the different emphases.  

These outcomes were once again measured statistically using the Friedman test 

statistic with a Wilcoxon-Nemenyi-McDonald-Thompson (WNMT) multiple comparison 

correction. The null hypothesis was that the distribution of differences of the two ranks is 

centered on zero, implying that both ranks come from the same distribution.  All of the 

preceding comparisons were also checked for correlations using the Spearman rank 

correlation coefficient. These tests are described in more detail in section 3.9. 
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3.8.2  Layer Weighting. 

The preceding weighting scheme is a unique approach to a weighting scheme for a 

multilayer network under this voting methodology. Traditionally, in social network 

analysis, edge weights are used to provide information on relative values of edges within a 

single network layer. To extend this concept to a multilayer network, layer weights were 

used to weight edges uniformly for a given layer. In other words, if a layer is given a layer 

weight of three, then each edge weight within that layer will have a value of three.  

To maintain consistency, the same three weight distributions discussed in the vote 

weighting section were also applied as layer weights. Such weight vectors may represent 

any relative scale of interest, but could intuitively be thought of as the relative perceived 

importance of each network layer to the overall analysis of the multilayer network. This 

contrasts slightly with the interpretation of vote weights as the number of times each layer’s 

ranking is counted in the Schulze method.  

The resulting edge weights on the aggregated network can take on the value of any 

additive combination of the layer weights used. For example, if three layers weighted 1, 2, 

and 3, respectively are aggregated in this manner, the resulting edge weights may have a 

range of values to include 1, 2, 3, 5, and 6. 

Additionally, unit weights were applied to each layer prior to simple aggregation 

yielding a weighted—summative—aggregation. This resulted in a final edge weight equal 

to the number of times the edge occurred in all of the layers. Thus, layer weights were 

effectively generated: operations, location, personal ties, and summative.  
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The ranks were compared between the full multiplex in its weighted states versus 

its unweighted state, the reduced multiplex in its weighted states versus its unweighted 

state, and the aggregated network in its weighted states versus its unweighted states. All 

comparisons were conducted using the Friedman test statistic with a WNMT multiple 

comparison adjustment.  

3.9   Statistical Methods 

3.9.1  Overview. 

Rankings are ordinal sets of values that can be statistically compared using non-

parametric methods. Specifically, Spearman’s rank correlation statistic, ρ, was chosen for 

determining rank correlations. Friedman’s test statistic with a WNMT multiple comparison 

adjustment was chosen to test for significant differences.  All tests were computed using 

MATLAB’s built-in functions. For Spearman, the MATLAB command corr() was used 

with the type specified as spearman. For the Friedman statistic, the MATLAB command 

friedman() was used.  

3.9.3   Testing for Significant Differences. 

All tests for significant differences between ranks described in this section refer to 

the non-timestamped multiplex network. Thus comparisons are between the full 12 layer 

multiplex network, the reduced (5 layer) multiplex network, and the fully-aggregated single 

layer network.  

The Friedman’s rank test is a method for examining all ranks across a set of voters 

simultaneously using a block matrix design and is given in equation 12 as: 
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where 𝑇𝑇𝑖𝑖𝑖𝑖 is the rank of the entry in the block matrix at location (i,j), 𝑛𝑛 is the number of 

rows in the matrix and 𝑘𝑘 is the number of columns in the matrix. 

Friedman’s rank test uses the null hypothesis that all groups have been chosen from 

a population having equal median values (Berenson, Levine, & Krehbiel, 2012). It takes as 

assumptions:  

1. “The [n] blocks are independent so that the values in one block have 
no influence on the values in any other block. 

2. The underlying variable is continuous. 
3. The data constitute at least an ordinal scale of measurement within 

each of the [n] blocks. 
4. There is no interaction between the [n] blocks and the [k] treatment 

levels. 
5. The [k] populations have the same variability. 
6. The [k] populations have the same [CDF].” (Berenson, Levine, & 

Krehbiel, 2012) 

The blocks (rows) were the listing of nodes and the treatments (columns) were the 

sets of rankings. Thus the Friedman test as implemented determines whether any set of 

rankings is significantly different from any other set; however, the Friedman test does not 

identify which set of rankings is different or whether more than one set is different. To 

determine this, each pairwise comparison must be computed individually using a multiple 

comparison method.  

A Type I error is the probability of incorrectly rejecting a null hypothesis. It is 

described by the alpha value. For example, given an 𝛼𝛼 =  0.05 level a Type I error is 

expected in one out of 20 tests. When considering pairwise comparisons, the number of 
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actual tests may quickly exceed 20 (this is true for greater than 7 compared items) making 

a Type I error more likely to occur by chance alone. Therefore, a correction should be made 

to account for the likelihood of committing a Type I error on account of the number of tests 

computed. This is known as a multiple comparison correction.  

There exist several possible correction methods, but the correction method chosen 

was the WNMT correction, as it is a conservative correction. It sets the family-wise error 

rate to be equal to the individual test alpha level and then divides the original alpha level 

by the number of tests. Thus given an 𝛼𝛼 =  0.05 and 20 tests, Bonferroni’s correction 

yields 0.05
20

= 0.025 as the alpha levels to be used for each test. This ensures a family-wise 

error rate equal to 0.05, the original alpha level chosen. 

Tests for significance were conducted to answer research questions 1 through 4. 

The block design had to be constructed in such a way that each block was independent of 

each other. Nodes are assumed to be independent of other nodes in the block structure. 

Interaction effects between layers and node rankings, if they exist, are considered a 

structural feature inherent to network data and are not being tested.  

For question 1, the Schulze rankings were computed for each centrality measure by 

compositing the rankings generated for each layer of the 12 layer multiplex network which 

was aggregated along the time dimension. Each centrality measure was also computed and 

ranked for the unweighted, fully-aggregated single layer network. 

To answer question 2, the Schulze composite rankings were first computed for each 

of the five centrality measures. These were computed using both the full 12 layer multiplex 

network which was first aggregated along the time dimension. The same composite 



86 
 

rankings were also computed for the time-aggregated 12 layer multiplex after it was 

reduced using the Jensen Shannon reduction method. 

The approach to question 3 was to compute the Schulze composite rankings for 

each centrality measure under four vote weight conditions: the three vote weight 

distributions and the unweighted composite.  

Question 4 required a second application of the Schulze method algorithm using 

the first Schulze method application’s outputs. This produced a composite of composites 

for the rankings, essentially creating an overall ranking which is a function of the rankings 

under each separate centrality measure. This process was repeated using no vote weights 

and using the three vote weight distributions.  The vote weights were applied during the 

first run of the algorithm. No weights were applied to the composite centrality rankings for 

the second run. Additionally, the Schulze algorithm was applied to the unweighted 

centrality rankings produced from the fully-aggregated network to produce an overall 

aggregated network ranking for comparison.  

3.9.2  Testing for Correlations. 

This section refers to the time-stamped multiplex data, either full, reduced, or fully-

aggregated to a single layer. Thus there are 120 rankings computed under each condition.  

Spearman’s rank correlation coefficient was used to answer research questions five 

through seven. Spearman’s rank correlation coefficient is defined in equation 13 as: 

 
𝜌𝜌 =

𝑐𝑐𝑙𝑙𝑐𝑐(𝑅𝑅1,𝑅𝑅2)
𝜎𝜎𝑅𝑅1𝜎𝜎𝑅𝑅2

 
13 
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where 𝑅𝑅1 represents the rankings of the first group (population) to be compared, 𝑅𝑅2 

represents the rankings of the second group (population) to be compared, 𝜎𝜎 is the standard 

deviation of the ranks and 𝑐𝑐𝑙𝑙𝑐𝑐(𝑅𝑅1,𝑅𝑅2) is the covariance of the ranks for the first and second 

groups (populations). 

To answer question 5, a Spearman rank correlation at the 𝛼𝛼 =  0.05 level was 

computed using pairwise values of the ranks between all pairs of timestamps for each 

measure. This was repeated for the full multiplex, the reduced multiplex, and the fully-

aggregated network. The baseline was considered the unweighted (binary) versions of the 

full, reduced, and fully-aggregated networks, respectively.  

Four aggregations were computed using the three weight distributions as layer 

weights and a summative (unit-weighted) approach.  The Schulze composite method was 

applied to the weighted full and weighted reduced multiplex with no vote weights. The 

Schulze method was then applied to the unweighted full multiplex network using the three 

weight distributions as vote weights. This is summarized in Table 3.  

In Table 3, SUM refers to the unit weights, OPS refers to weights determined by 

the operations weight distribution, LOC refers to weights determined by the location 

weight distribution, and PERS refers to weights determined by the personal ties weight 

distribution. Layer refers to the method of layer weighting and Vote refers to the method 

of vote weighting. Thus, for example the Layer SUM, no Vote implies the multiplex was 

unit-weighted by layer with no vote weights applied during the Schulze method and No 

Layer, Vote PERS means that the layers were binary-weighted, but the personal ties weight 

distribution was applied using the vote weight methodology. The baseline networks were 
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chosen to be the completely unweighted (binary) networks. These are listed in the first row 

for each of the three columns. 

Table 3: Summary of Weighting Methods Applied 

Full Multiplex Reduced Multiplex Aggregated Network 
No Layer, No Vote No Layer, No Vote No Layer 

Layer SUM, No vote Layer SUM, No Vote Layer SUM 
Layer OPS, No Vote Layer OPS, No Vote Layer OPS 
Layer LOC, No Vote Layer LOC, No Vote Layer LOC 
Layer PERS, No Vote Layer PERS, No Vote Layer PERS 
No Layer, Vote OPS   
No Layer, Vote LOC   
No Layer, Vote PERS   

 

The full list of eight by three arrays of correlation matrices for each centrality 

measure are included in Appendix A for visual reference. To assess how different each 

correlation matrix is from the baseline (binary network matrix), the following methodology 

was adopted. Each weighted correlation matrix was compared against its respective binary-

weighted baseline value using MATLAB’s signtest() function at the  

𝛼𝛼 =  0.05 level. The matrices were first arrayed as a vector and then compared. The sign 

test was used to determine if the samples come from the same distribution. The results are 

tabulated in Chapter IV.  

For question 6, the composite rankings under each of the three vote weight 

distributions for each of the five centrality measures were computed. These were computed 

using the unweighted full 12 layer multiplex network which had first been aggregated along 

the time dimension. This resulted in 5 groups of 3 rankings.  

For question 7, each ranking computed for question 6 was fed into the Schulze 

algorithm again to retrieve an overall composite ranking as a function of all five of the 
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centrality measures considered simultaneously. This resulted in 3 overall rankings, one for 

each vote weight distribution from Table 2.  

The 18 rankings computed for questions 6 and 7 were then combined with the 

unweighted vote rankings and a Spearman’s correlation coefficient was computed for each 

pairwise comparison.  

3.10   Qualitative Methods 

3.10.1  Comparing Ranked Nodes. 

To answer question 9, several rankings were compiled for comparison. First, 

Schulze composite rankings were computed using the unweighted full 12 layer multiplex 

network which had first been aggregated along the time dimension. This was done for each 

of the five centrality measures. Next the overall Schulze composite was computed using 

the Schulze composites for each of the five measures. This resulted in 6 rankings.  

These 6 rankings were then re-computed under each of the vote weight distributions 

and finally an aggregate ranking was also computed on the single layer aggregation of the 

original dataset for each centrality measure. This resulted in a total of 23 rankings.  

Comparing this set of rankings qualitatively depends on first arranging the ranks in 

a directly comparable way. All rankings were sorted in descending order; however, tied 

values exist which can make direct comparisons problematic. Instead, they must first be 

processed by assigning the average of the tied rank positions as the true ranking. In this 

way, ties are made explicit and a direct comparison becomes possible. This is illustrated 

through an example given in Table 4.  
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Table 4: Ranking Comparison Example 

 

In Table 4’s example, the nodes are first sorted in descending order according to 

their raw rankings. Their identification numbers (Node ID) are recorded corresponding to 

their absolute positions seen in the first column. When ties exist between raw ranks, a direct 

comparison between positions of Node IDs for each set can be misleading. For example, 

Rank Set 1 shows Node ID 43 in the first position and Node ID 105 in the second position. 

In contrast, Rank Set 2 shows the reverse. When using the raw rank values, it might be 

concluded that Rank Set 2 has ranked node 43 higher (value of 138) than Rank Set 1 ranked 

node 43 (value of 137). Rank Set 2 also ranked node 105 higher (value of 139) than did 

Rank Set 1 (value of 137).  

In fact, Rank Set 1 ranked nodes 43 and 105 as tied, producing uncertainty in the 

comparison, as they could just as easily be listed in reverse order (in fact they are listed in 

numeric order by default). To account for such possible discrepancies, the absolute 

positions of the tied nodes 43 and 105 within Rank Set 1 are averaged, and the average 

value is assigned as the tied rank value. Thus Rank Set 1 contains a tied rank value of 138.5 

for both node 43 and node 105. Rank Set 2 has no tied values and so the tied rank assumes 

the same values as the absolute position of the nodes. When the tied rank values for nodes 

43 and 105 are then compared between the sets, Rank Set 2 has still ranked node 105 higher 
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(value of 139) than did Rank Set 1 (value of 138.5), but it now ranked node 43 lower (value 

of 138) than did Rank Set 1 (value of 138.5). Thus the result is reversed when the scales 

are aligned to account for ties in this manner. 

This same process described in the example from Table 4 was used to produce all 

subsequent ranking comparisons and to conduct qualitative assessments based on each 

actor’s relative ranking within the top 20 nodes. In this way it was assessed whether a given 

method had identified qualitatively important actors (as determined using identifiers within 

the dataset and open source information) and how their relative standings compared.  

3.11   Summary  

Chapter III described a series of research questions and the respective 

methodologies used to answer them. Detailed statistical and qualitative processes were 

discussed and examples were provided for clarity. Once the methodologies were applied 

and results collected, analysis was conducted on these results. These analyses and results 

are discussed in depth in Chapter IV.  
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IV. Analysis and Results 
 

 

4.1   Chapter Overview 

The preceding chapters have detailed the background, motivation, related literature, 

and methodology of this thesis. This chapter describes the results achieved through use of 

this methodology and discusses their implications and relevance. It lists the analysis and 

results in order of the research questions given in Chapter III, section 3.10.  

4.2   Research Questions Answered 

 This section lists results and discussion which are relevant to each research question 

listed in section 3.10. It is organized by type of question with comparative statistical 

questions listed first, followed by correlative statistical questions, followed by qualitative 

questions. A detailed explanation of each question and its answer is discussed.  

4.2.1  Comparative Statistical Questions. 

The first set of questions are comparative statistical questions which seek to answer 

whether or not rankings are significantly different from each other. To answer these 

questions, the Friedman test was used along with a WNMT multiple comparison 

correction. All comparative tests were conducted at the 𝛼𝛼 =  0.05 level. The outputs are 

tabulated to list the identifiers for the two sets of rankings being compared, the lower bound 

on the estimate, the estimate itself, the upper bound, and the p-value. Significant p-values 

are colored red and green.  
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All tests were also conducted using the time-aggregated 12 layer unweighted 

multiplex network, which was then either reduced using the Jensen Shannon distance 

method, or aggregated to produce an unweighted fully-aggregated single layer network. A 

complete listing of all Friedman test block designs are shown in Appendix B, Table 26 and 

results of the corresponding tests are listed in Appendix B, Table 27. A complete listing of 

all WNMT multiple comparison correction test results is given in  

Appendix B, Table 28 through Table 31.  

These results answer very specific statistical questions for this multilayer network 

dataset in particular. They should not be considered general results and by themselves they 

do not provide a qualitative assessment of the utility of the Schulze method. Still, they are 

useful to show that significantly different results are possible under its application. 

4.2.1.1  Question 1. 

Question 1 asks if the Schulze composite rankings are significantly different from 

the fully-aggregated network rankings. Rankings were computed and compared for each 

centrality measure. The results are listed in Table 5 and show that when the Schulze 

composite rankings are compared against the rankings for the fully-aggregated network, 

most centrality measures show no significant differences. Degree centrality is the only 

measure which did produce a statistically significantly different ranking between the 

Schulze composite and the aggregated rankings (p < 0.01).  

This suggests that for the Noordin Top network, the Schulze method of compositing 

the set of rankings for each network layer tends to produce statistically comparable results 
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when compared to the more standard approach of first aggregating the network and then 

computing a single ranking, for most network centrality measures except degree centrality.  

Table 5: Schulze Composite versus Aggregated Rankings WNMT Test Results 

 

4.2.1.2  Question 2. 

Question 2 asks if Schulze composite rankings are significantly different from the 

composite rankings computed on the reduced multiplex network. Rankings were computed 

and compared for each centrality measure. The results are listed in Table 6 and show that 

all comparisons between Schulze composite rankings on the full and reduced multiplex are 

significantly different. This suggests that layer reduction has a significant effect on the 

behavior of the Schulze composite method, regardless of centrality measure used. 

Table 6: Schulze Composite Rankings on Full Multiplex versus Composite Rankings 

on Reduced Multiplex - WNMT Test Results 
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4.2.1.3  Question 3. 

Question 3 asks if the Schulze composite rankings are significantly different from 

each other under each of the vote weight distributions. Rankings were computed and 

compared for each centrality measure. The results are listed in Table 7 and show that 19 

out of the 30 pairwise comparisons are significantly different.  

Notably, the location vote weight distribution did not produce statistically 

significantly different composite rankings when compared to the unweighted composite 

rankings for all measures. In contrast, the personal ties vote weight distribution produced 

significantly different composite rankings compared to the unweighted rankings in all 

cases; operations produced significant differences in all cases except eigenvector centrality 

(p > 0.20). 

In addition, the location and personal ties weight distributions produced rankings 

which were significantly different for all five centrality measures. The operations weights’ 

rankings, however, were statistically different from those of the location weights except 

for degree (p > 0.20) and eigenvector (p > 0.20) centralities. Similarly, the operations 

weights produced significantly different rankings compared to the personal ties weights 

only for eigenvector (p < 0.005) and betweenness (< 0.0001) centralities. 
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Table 7: Schulze Composite Unweighted Rankings versus Three Weight 

Distributions - WNMT Test Results 

 

4.2.1.4  Question 4. 

Question 4 asks if the overall Schulze composite rankings are significantly different 

from the overall weighted Schulze composite rankings and aggregated rankings. Rankings 

were computed and compared for each centrality measure. There were significant 

differences identified by the Friedman tests. The results are listed in Table 8 and indicate 

that only the operations weight distribution produced statistically significantly different 

overall Schulze composite rankings. 
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Table 8: Schulze Overall Composite Unweighted Rankings versus Three Weight 

Distributions and Aggregated Composite - WNMT Test Results 

 

The previous tables listed select test results. The complete listing of test results is 

located in Appendix B, in Table 27 through Table 30. These results are also summarized 

in Table 9. 

Table 9: Overall Summary of Multiple Comparison Test Results 

 

Having answered the questions posed regarding any significant differences in 

rankings under the variety of measures, reduction, and weights described, correlations 

between rankings are explored next.  

4.2.2  Correlative Statistical Questions. 

4.2.2.1  Question 5. 

Spearman rank correlations were computed for each timestamp under each of the 

conditions from Table 3 resulting in five figures (Figure 7 through Figure 16, which refer 
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to betweenness, closeness, eigenvector, degree, and PageRank centrality, respectively) 

each with an eight by three array of correlation matrices as seen in Appendix A. Correlations 

were computed using Spearman’s correlation coefficient and were colored red for low 

correlations and green for high correlations. The diagonals are colored black for clarity. 

All correlation tests were conducted at the 𝛼𝛼 =  0.05 level. 

The first row for each of the arrays represents the Schulze composite rankings on 

the full 12-layer unweighted multiplex at each time stamp, the Schulze composite rankings 

on the reduced-layer unweighted multiplex at each time stamp and the standard rankings 

on the fully-aggregated unweighted multiplex network at each time stamp.  

The second row shows the Schulze composite rankings on the full 12-layer layer-

unit-weighted multiplex network at each time stamp, the Schulze composite rankings on 

the summative reduced-layer layer-weighted multiplex network at each time stamp, and 

the standard rankings on the summative fully-aggregated multiplex network at each time 

stamp.  

The third row shows the operations weight distribution applied as layer weights for 

the full, reduced, and aggregated networks. The fourth row shows the location weight 

distribution applied as layer weights and the fifth row similarly shows the personal ties 

weight distribution. 

The sixth, seventh, and eighth rows show the unweighted full, reduced, and 

aggregated networks with the operations, location, and personal ties vote weights, 

respectively.  
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Each weighted correlation matrix was compared against its respective binary-

weighted baseline value using MATLAB’s signtest() function at the  

𝑎𝑎𝑙𝑙𝑎𝑎ℎ𝑎𝑎 =  0.05 level. This was used to determine if the samples come from the same 

distribution. These results are listed in Table 10 through Table 14.   

Table 10: Betweenness Centrality Rankings Correlation Comparisons 

 

As can be seen in Table 10, for betweenness centrality, the mean absolute 

differences vary under vote weighting, but not under layer weighting for the Schulze 

method on the full multiplex network. However, the mean differences were not known to 

be significant until the sign test was applied to the correlation values. The sign test 

computed this by taking the difference between the correlation coefficients and checking 

that the resulting distribution had a median of zero.  
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Once it was applied, it showed that each of the correlation arrays are significantly 

different from the baseline unweighted multiplex. This is also true for the comparisons 

made on the reduced multiplex network and the fully-aggregated network. In fact, these 

same results hold for all centrality measures. 

Table 11: Closeness Centrality Rankings Correlation Comparisons
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Table 12: Degree Centrality Rankings Correlation Comparisons

Table 13: Eigenvector Centrality Rankings Correlation Comparisons
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Table 14: PageRank Centrality Rankings Correlation Comparisons 

 

4.2.2.2  Question 6. 

Next, Spearman correlations were computed for pairs of rankings to test whether 

significant correlations exist between the unweighted Schulze composite ranking and the 

composite rankings under each of the three vote weight distributions. This comparison was 

computed for each of the five centrality measures and the results were tabulated and are 

shown in Table 15 using the same coloring described in the results for Question 5.   

The high correlation values within the betweenness centrality block suggested that 

some assessment of differences in correlation should be produced. To investigate which 

measures are most susceptible to changes in rankings under different weight distributions, 

the average group auto-correlation for each centrality measure was computed. This was 

done by first sorting the values into blocks for each centrality measure and then averaging 
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the upper triangular correlation coefficients for each diagonal block in Table 15. The results 

are presented in Table 16. 

The average values show that betweenness centrality was the least susceptible to 

changes in rankings under the three vote weight distributions (location, operations, and 

personal ties weights are abbreviated Loc, Ops, and Pers, respectively in the table) for the 

time-aggregated network.  

Table 15: Correlation Chart for Unweighted and Weighted Schulze Composite 

Rankings 
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Table 16: Average Group Auto-Correlations for Five Centrality Measures 

 

The next least-susceptible measures are degree and PageRank centralities, which 

are tied with an average group auto-correlation of 0.82. Thus while it is clear that 

significant correlations were observed between unweighted Schulze composite rankings 

and the composite rankings under each vote weight distribution, there is a distinct 

difference in the level of correlation between betweenness centrality and the other four 

centrality measures.  

This notably higher resistance to changes in rankings found in the betweenness 

centrality composite rankings led to a modification of this methodology. Betweenness 

centrality was removed from consideration and the correlations were recomputed. The 

results with betweenness centrality excluded were then compared with the original tests 

which do contain betweenness centrality to note the differences, if any. 

4.2.2.3  Question 7. 

Next, the question was asked whether an overall Schulze composite ranking 

correlates with its component composite rankings for each centrality measure. The 

correlation chart depicted in Table 17 shows that all overall composite rankings are 

correlated regardless of vote weight distribution used. Additionally, the overall composite 
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rankings under the operations weight distribution is least susceptible to inclusion and 

exclusion of the betweenness centrality. In contrast, the unweighted overall composite 

rankings are most susceptible to changes when betweenness centrality is added or removed.  

Table 17: Correlations of Overall Schulze Composite Rankings with and without 

Betweenness Centrality 

 

The preceding sections addressed the specific statistical questions of interest. It 

demonstrated that significant differences exist between rankings using the Schulze 

composite method and other methods under the variety of tested conditions. These results 

say little about the actual utility of the Schulze composite method. They are different, but 

that does not necessarily mean they are as good or better. To help to answer whether the 

Schulze composite method is as good or better than the typical aggregated network 

approach—among other questions—qualitative comparisons are conducted and discussed 

in the following section.  
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4.2.3  Qualitative Questions. 

4.2.3.2  Question 9. 

Finally, the question was asked whether the sets of nodes placed in the top 20 

ranking positions under the various ranking composite methodologies are similar and 

whether their relative standings are similar. This qualitative assessment was conducted on 

the time-aggregated full 12 layer multiplex network and the fully-aggregated network. It 

was done by first arraying the top 20 node identifiers along with their tied rank values as 

described in section 3.10.  

The first comparison is between the Schulze composite rankings and the fully-

aggregated rankings for each of the five centrality measures. This is summarized in Table 

18. 

Table 18: Comparison of Top 20 Ranked Nodes - Composite versus Aggregated 
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As seen in Table 18, the rankings produced by the Schulze composite method differ 

from those produced using the aggregated network, for each centrality measure. 

Betweenness centrality under the Schulze composite method produces essentially a listing 

in rank order by Node ID, except for node 105 at the top rank position. This is unexpected, 

especially given the conclusion that the aggregated betweenness ranking and the Schulze 

composite betweenness ranking are not statistically significantly different as was reported 

in Table 5. This anomaly also informed the decision to alter the methodology to compute 

rankings both including and excluding betweenness centrality for comparison. 

The remaining four centrality measures illustrated some notable differences and 

similarities. The Schulze method placed nodes 43 and 105 in the top positions for all 

centrality measures. The aggregated method did so for all measures except eigenvector 

centrality where node 105 (Noordin Top himself) is listed in the ninth position. Assuming 

that Noordin Top is likely to be highly connected to people who are also highly 

connected—the measurement pertaining to eigenvector centrality—the Schulze composite 

method has arguably outperformed the standard aggregated method in this case.  

Another noticeable difference was the inclusion of node 131 in the top 20 nodes list 

for all measures when the Schulze composite method is used. Node 131 is Usman Bin Sef 

and was listed as a key enabler for the network within the dataset; he was also mentioned 

by the International Crisis Group as a leader of the East Java Wakalah, and the one who 

helped hide Noordin Mohammed Top (International Crisis Group, 2007). 

The aggregated method placed node 45 consistently in the top five positions, 

whereas the Schulze composite method excluded node 45 from the top 20 positions in all 
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cases. Node 45 is Chandra and no additional information was found on his importance to 

the network, but he was listed as a fighter in the dataset. 

The next comparison was between the overall Schulze composite rankings on the 

full multiplex, the overall Schulze composite rankings on the reduced multiplex and the 

composited fully-aggregated rankings. Results are shown in Table 19 both with and 

without betweenness centrality. 

Table 19: Comparison of Top 20 Ranked Nodes - Overall Full, Reduced, Aggregated 

with and without Betweenness 
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As can be seen in Table 19, the reduced layer network composite ranking reverts to 

a nearly-ordered list of Node IDs after only the first five top-ranked nodes and node 43 

drops by four positions, though it is listed as number one in all other cases. This suggests 

that a substantial amount of relevant information was lost during the layer reduction 

process resulting in a subsequent loss of relevant rankings for the nodes. In addition, this 

result for the reduced multiplex network is nearly the same both with and without 

betweenness centrality rankings included.  

In contrast, many more relevant actors are included in the top 20 ranks for both the 

overall Schulze composite and overall Schulze aggregated rankings. Further, the 

distribution of nodes is qualitatively somewhat similar. Both list nodes 43 and 105—

Azahari Husein and Noordin Mohammad Top—as the two top nodes. These were two of 

the most prominent figures within the Noordin Top network. This result is true both with 

and without betweenness centrality.  

Owing to the behavior of the Schulze method on the betweenness centrality 

rankings, inclusion of betweenness centrality may be skewing the overall composite. Thus 

the overall composite was computed without considering composite betweenness centrality 

ranking as a component. This does alter the final list of top 20 nodes. Notably, node 131 

(Usman Bin Sef) moves up in the list by five positions.  

Next, a comparison is shown between the unweighted composite rankings, the 

composite rankings for the three vote weight distributions, the standard aggregated 

rankings, and the composite reduced rankings. This is repeated for each of the five 

centrality measures and the results are given in Table 20 through Table 24, respectively. 
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Table 20: Comparison of Top 20 Ranked Nodes - Composite of Full Unweighted and 

Weighted, Aggregated and Composite Reduced – Betweenness Centrality 

 

Table 20 lists the weighted versus unweighted composite rankings for betweenness 

centrality. As before, the Schulze method suffers in performance when considering the 

betweenness centrality rankings. As can be seen, the rankings are essentially ordered lists 

of the node IDs, with the most diversity seen under the personal ties weight distribution. 

The Schulze composite rankings for the reduced multiplex is a node ID-ordered list with 
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the exception of the tied values for nodes five and six. Thus it seems once again that the 

Schulze method has failed to produce meaningful results for betweenness centrality.  

Table 21: Comparison of Top 20 Ranked Nodes - Composite of Full Unweighted and 

Weighted, Aggregated and Composite Reduced – Closeness Centrality 

 

The difficulties noted for betweenness centrality do not exist with the remaining 

centrality measures. In fact, the rankings appear to have included many key figures from 

the network. Table 21 lists the results for closeness centrality and it can be seen that the 



112 
 

three vote weight distributions produce notable changes in the rankings. When operations 

and location are emphasized, we see that nodes 43 and 105 remain in the top positions.  

When personal ties are emphasized, however, node 43 moves down 3 positions. 

Node 43 (Azahari Husein) was the head of operations and the chief bomb-maker for the 

network. It makes sense that operations and location weights would not alter his position 

while the personal ties weights might.  

Also in the case of the personal ties weight distribution, node 125 rises to the third 

highest position and is Ubeid, Noordin Mohammed Top’s courier. Node 23 rises to second 

position and is Ahmad Rofiq Ridho, though very little additional information was found 

on his identity or importance except that he is also listed as a courier in the dataset. 

Similar results hold for the remainder of the network centrality measures shown in 

Table 22, Table 23, and Table 24. This shows that vote weight distributions can greatly 

influence the final ranking of nodes within a multiplex network. It strongly suggests that 

meaningful changes occur based on the actual distribution of weights applied. This makes 

sense as the integer weights can be thought of as a number of additional voters who agree 

on the node rankings. The more weight that is given, the more the composite ranking will 

tend toward the weighted ranking preference. 
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Table 22: Comparison of Top 20 Ranked Nodes - Composite of Full Unweighted and 

Weighted, Aggregated and Composite Reduced – Eigenvector Centrality 
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Table 23: Comparison of Top 20 Ranked Nodes - Composite of Full Unweighted and 

Weighted, Aggregated and Composite Reduced – Degree Centrality 
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Table 24: Comparison of Top 20 Ranked Nodes - Composite of Full Unweighted and 

Weighted, Aggregated and Composite Reduced – PageRank Centrality 

 

By looking at the previous tables, it was observed that tied values seem to cause 

problems with the quality of the rankings when the Schulze method is used. This was first 

thought to be limited to betweenness centrality, but in fact was present in all measures to 

varying degrees.  

In the case of this methodology, node-alignment is required, and for this data set, 

this causes a large number of isolated nodes to be forced into many of the layers. These 
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isolated nodes are given the same value within each of the centrality measures, which 

results in tied ranking values. To check if such isolated nodes were indeed the problem, 

random networks were generated for testing.  

The prescribed node degree connected graph (PNDCG) generation algorithm was 

used to create 12 new network layers using the degree distributions of the original 12 

networks (Morris, O'Neal, & Deckro, 2014).  The PNDCG algorithm produces fully 

connected networks. These 12 new networks were processed using the Schulze method and 

the resulting rankings were observed. It appeared that the tied value effects were eliminated 

as there was no observable numeric ordering dominance. Thus, isolated nodes seem to be 

the source of the problem. 

Unfortunately, the outputs of the PNDCG algorithm, while representative of the 

original networks, are still random networks; the algorithm was used to verify the problem, 

but cannot be used to fix the problem. Instead, a different method was needed which would 

adjust for the isolated node effects on the original data. Additional weighting methods were 

explored as a potential mitigating solution.  

First, the vote weights were adjusted according to the density of the network layers. 

Density is defined as the ratio of the number of edges in a network to the total possible 

number of edges were the network fully connected. The rationale was that a greater 

proportion of overall density contained within a layer implies a greater proportion of 

information contributed to the multilayer network by that layer. The total density for the 

multilayer network was computed by adding the densities of all 12 layers. The density 



117 
 

proportion for each layer was calculated as the ratio of the density for a layer to the total 

density of the multilayer network.  

100 votes were then allocated to each layer according to these proportions. This 

new assignment of vote weights was treated as the baseline weight values. For comparison 

purposes, the original three weight distributions were then each added to this baseline to 

produce three augmented weights. This appeared to improve the performance of the 

Schulze algorithm, but a second weighting adjustment was also attempted.  

The second set of weights were applied in an attempt to adjust for the number of 

isolated nodes directly. The vote weight for each layer was given the value of the number 

of connected nodes within that layer. This new distribution of vote weights was once again 

treated as a baseline weighting and was augmented by each of the original three layer 

weight distributions for comparison. This appeared to improve the performance of the 

Schulze method even further.  

To better assess the following comparisons, a list of important actors for the 

Noordin Top network was compiled. This list was based primarily on a reading of one of 

the sources used to build the data sets: the report on the state of the Noordin network by 

the International Crisis Group (International Crisis Group, 2007). This resulted in the 

qualitative identification of 24 important actors in the network, based on mentions of their 

involvement in key operations, leadership status, or direct links to Noordin Mohammed 

Top. This list is given in Table 25. 
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Table 25: List of Identified Important Actors in Noordin Network 

 

Noordin Mohammed Top and Azahari Husein were two of the most prominent 

members of the Noordin network and are bolded. The numbers beside the names are the 

identifiers used in Figure 7 and Figure 8, which follow, and should not be mistaken for the 

ranking of each actor in the network.  
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Figure 7: Identification of Important Nodes: Patterns by Ranking Approach 

Figure 7 shows four columns each with six sub-columns of rankings. The rankings 

which are colored yellow correspond to node identifiers listed in Table 25. The ranking 

position can be seen on the left of the figure, valued one through 20. The right-most column 

shows the rankings for each centrality measure measured on the fully-aggregated binary 

(unweighted) network. The All Measures column under the Measures on Aggregate 

heading refers to the Schulze method overall composite ranking of the five centrality 

measures’ rankings on the fully-aggregated binary network.  

The Normal Schulze heading refers to the Schulze composite rankings as computed 

on the full, unweighted multiplex network. The subheadings refer to the rankings by the 
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five centrality measures considered, and the All Measures subheading is the overall Schulze 

composite of the five centrality measures’ rankings.  

The Density Weights heading refers to the Schulze composite rankings when the 

baseline weights were built according to the proportion of overall density found in each 

layer. Finally, the Connected Weights heading refers to the Schulze composite rankings 

when the baseline weights were adjusted according to the number of isolated components 

in the network.  

As can be seen, the concentration of the yellow node identifiers within the top of 

the rankings increases as one views the columns from left to right. This suggests that the 

use of the Connected Weights provides a better assessment of node importance than do the 

others. Additionally, the numeric ordering observed with the bolded, boxed node identifiers 

decreases in size. This suggests that by emphasizing the layers with fewer isolated nodes, 

the Schulze method is able to better identify a quality ranking of nodes. It can also be 

observed that the rankings computed on the aggregated networks show the least 

concentration of the important node identifiers toward the top of the ranking lists.  

The Connected Weights were then augmented by the original three weight 

distributions from Table 3 and the comparison is depicted in Figure 8. It shows that the 

relative concentration of the yellow node identifiers (important nodes in the network) does 

not vary much with the additional use of the three original weight distributions. However, 

some changes do occur. For example, under Connected PERS (the adjustment for the 

personal ties weight distribution), node 6 is moved up the list. Upon seeing such 
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movement, one could look more deeply at why such a move might occur when the layers 

are emphasized according to the personal ties weights. 

 

Figure 8: Identification of Important Nodes: Patterns with Additional Weights 

4.3   Summary 

The preceding chapter discussed results of the analysis of the Noordin Top dataset 

using the methodologies proposed in this thesis. The next chapter sums up the findings and 

draws some conclusions, and offers items for future research efforts.  
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V. Conclusions and Recommendations 
 

5.1   Chapter Overview 

 This chapter presents conclusions, recommendations for action, a review of the 

significance of the findings of this research, and an identification of any methodological 

shortcomings and/or ideas for future research.  

5.2   Conclusions of Research 

Application of the Schulze voting method to the ranking of nodes on a multiplex 

network yields meaningful rankings that are different from rankings derived through the 

standard practice of aggregating the network layers prior to computing centrality measures. 

Both statistically significant differences and correlations were observed under a variety of 

conditions and across all centrality measures. 

Vote weight distributions are potentially a useful way to elicit information from a 

multiplex network pertaining to rankings of critical nodes. When certain layers are 

emphasized—given a greater number of votes—different ranking outcomes are produced 

which seem to align with which layers were emphasized.  

Betweenness centrality produced several unexpected and even contradictory results 

when the Schulze composite method was applied. In fact, the method is sensitive to tied 

values resulting from isolated nodes in the network. This was ameliorated to some degree 

through the use of weight adjustments. These adjustments seemed to produce final rankings 

which listed important actors at the top of the ranking list. 
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When rankings were computed using the Schulze composite method for the time-

stamped network, the time blocks of highly correlated rankings seemed to be more well-

defined than for the case of the aggregated time-stamped network. These blocks aligned 

reasonably well with known events. Firm conclusions are difficult to draw on the quality 

of alignment as lag effects are unknown. 

At least in the case of the network data set considered (and using the proposed 

Schulze composite method), reducing the data using the Jensen Shannon reduction method 

proposed in De Domenico et al. (2015) resulted in significantly different ranking results 

under a variety of network centrality measures and with and without layer weights. In some 

cases these rankings appeared to be less meaningful than rankings derived from the 

multiplex network without reduction and those derived under the standard approach of 

fully aggregating the network. 

5.3   Significance of Research 

 This research demonstrated a new methodology for determining nodes of critical 

importance—in ranked order of importance—for a node-aligned multiplex network. It 

provided both statistical and qualitative analyses on the differences of ranking outcomes 

under this methodology. The application of the methodology detailed in this thesis will 

allow meaningful lists of critical nodes to be produced for a multiplex network. These can 

also now be produced using the same methodology for any measure of interest or functions 

thereof. This helps to answer the questions identified within the Joint Concept – Human 

Aspects of Military Operations (Office of the Joint Chiefs of Staff, 2016).  
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 This methodology demonstrated the applicability of the Schulze voting method to 

network data. However, it is not limited to extensions within social network analysis. It 

could also be used to aggregate rankings for any set of targets. Thus, for example, it could 

be used to compile a final target list based on inputs from each service or other agencies 

during a target review process in a theater of operations.  

Additionally, this research demonstrated possible limitations to using the Jensen 

Shannon layer reduction process. This suggests that reduction of a data set should be 

considered only when necessary, or only after additional assessments are conducted to 

determine its appropriateness on a case-specific basis. 

5.4   Recommendations for Action 

 This thesis demonstrated statistical and qualitative differences between the 

proposed methodology and standard single layer network approaches to ranking nodes 

within a multiplex network. As a next step, subject matter experts on the Noordin Top 

network should ideally be consulted to determine if the final rankings produced using this 

methodology were better than those produced using the standard approach of aggregating 

the network and then computing rankings.  

 It is also suggested that this methodology be applied to another dataset for 

comparison purposes and also with the intent of generating a more thorough qualitative 

assessment of the outcome by using subject matter expertise.   
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5.5   Recommendations for Future Research 

The methodology presented was based on node-aligned multiplex data. In a 

multiplex network, the inter-layer connection represents a self-loop, while in a multilayer 

network, the inter-layer connections are not necessarily self-loops, but could be. The 

second case allows for a more general class of networks to be represented. A generalization 

to multilayer models rather than a multiplex model is therefore a useful area of future 

research. 

The node-alignment used in this methodology forced all nodes to be present on 

each network layer. This resulted in a large number of isolates, especially when considering 

the already sparse matrices at each time stamp. This led to long tails of tied values within 

the rankings. The Schulze composite method depends only on relative rankings of a set of 

nodes. If a node is not given a rank—which would occur if the node were not present on a 

layer—then it is ranked as zero by default. Thus the Schulze method should be applicable 

to networks whose layers are not node-aligned and should produce similar results without 

the need to create node-aligned layers. Verification of this assertion would be a useful 

future study.  

The nature of the method proposed here allows it to function independently of any 

particular measure chosen. However, some interesting results were observed for 

betweenness centrality rankings. A future study of interest is whether this effect is an 

artifact of this data set in particular, or more generally a result of this methodology when 

it is applied to betweenness centrality rankings.  
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There are many other ordinal voting methods besides the Schulze method which 

might be tested within the context of multilayer SNA and production of critical node 

rankings. There also exist cardinal methods which consider not just the relative ranking of 

nodes, but also the magnitude of the underlying scores. Application of such cardinal voting 

methods might prove even more useful when considering network centrality measures, as 

the additional information contained in the relative score magnitudes can be incorporated 

into the outputs. 

The development of a general method for computing node rankings on a node-

aligned multiplex network allows a list of critical nodes to be developed within a multiplex 

network context. However, to truly answer the key player problem as defined by  

Borgatti (2006), an adjustment is needed which produces an ensemble ranking. Extending 

this methodology to produce optimal top groupings of nodes as opposed to an ordered list 

of nodes is a worthwhile improvement if it is possible. 

Finally, a more detailed analysis of the time series data and changes in relative 

position of critical nodes over time under each ranking procedure would be a very 

interesting study for a future researcher. 

5.6   Summary 

This chapter concludes this thesis. It discussed the findings and their interpretation 

for significance and relevance as well as ideas for future related research efforts.   
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Appendix A 
 

 

Figure 9: Betweenness Centrality 
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Figure 10: Betweenness Centrality, cont. 
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Figure 11: Closeness Centrality 
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Figure 12: Closeness Centrality, cont. 
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Figure 13: Degree Centrality 
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Figure 14: Degree Centrality, cont. 
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Figure 15: Eigenvector Centrality 
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Figure 16: Eigenvector Centrality, cont. 
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Figure 17: PageRank Centrality 
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Figure 18: PageRank Centrality, cont. 
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Appendix B 

Table 26: List of Independent Block Designs for Friedman Test 
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Table 27: Friedman Test Results 
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Table 28: WNMT Multiple Comparison Correction Results 
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Table 29: WNMT Multiple Comparison Correction Results, cont. 1 
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Table 30: WNMT Multiple Comparison Correction Results, cont. 2 
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Table 31: WNMT Multiple Comparison Correction Results, cont. 3 
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